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 In terms of digital files, compression is the act of encoding information using fewer bits 
than what’s found in the original file. When we say image compression, we have in mind 
an image that has fewer bytes than the original image but has the most important 
features that describe the original image. So, the aim of image compression is to reduce 
the image size without degrading image quality below an acceptable threshold. In 
MATLAB, an image is stored as a matrix. One approach is to apply the Singular Values 
Decomposition (SVD) to the image matrix. This method is implemented in MATLAB. In 
order to divide the matrix of the given image into three other matrices in MATLAB, we 
can use the function svd().  As performance metrics, we can use PSNR and Compression 
ratio. Digital Watermarking is defined as the process of hiding a piece of digital data in 
the cover data which is to be protected and extracted later for ownership verification.  In 
an SVD-based watermarking scheme, the singular values of the cover image are modified 
to embed the watermark data. All tests and experiments are performed using MATLAB 
as the computing environment and programming language. Also, in the RStudio 
programming language we can see the implementation of the SVD method in image 
compression. 

 
 
 

1. Introduction  
 

The concept of Singular Value Decomposition, as we know it today, emerged in the mid-20th century. It was 
independently introduced by several researchers. In 1936, Eugenio Beltami introduced the concept, but it was not 
widely recognized at the time [1]. In 1950, Peter Henrici discussed a form of SVD in the context of numerical 
analysis [2]. In 1955, Roger Penrose independently rediscovered the SVD and highlighted its significance [3]. The 
method gained more attention in the 1960s and 1970s as computers became more powerful, allowing for efficient 
numerical implementation of the SVD [4-12]. Today, SVD method is a standard technique in various fields, 
including machine learning, image and signal processing, statistics, and data science.  

The main objective of image compression is to reduce the redundancy of the image data to be able to store or 
transmit data in an efficient form. Image compression may be lossy or lossless. Lossy methods [13] are especially 
suitable for natural images such as photographs in applications in which minor (sometimes imperceptible) loss of 
fidelity is acceptable to achieve a substantial reduction in bit rate. In other hand the Lossless compression is 
preferred for archival purposes. 

Digital Watermarking is used for a wide range of applications, such as: copyright protection, source tracking, 
broadcast monitoring, medical application, improvement of legacy systems, authentication & tamper detection, 
usage control, ownership identification etc [14]. A digital watermarking can be visible or invisible. A visible 
watermark typically consists of a conspicuously visible message or a company logo indicating the ownership of 
the image. On the other hand, an invisible watermarked image appears very similar to the original. The existence 
of a watermark can only be determined using an appropriate watermark extraction or detection algorithm. 

In MATLAB (or in RStudio), we first have to find the optimal number of singular values that we need in order 
to have a compressed image with the essential information. After that, we can see the error in values (numbers) 
or even in images. This means that we can take an image with the features that we removed from our original 
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image during the compression process.  R programming language is not convenient to work with matrices or with 
method like SVD due to its statistical orientation. However, we will leverage it to assist users in understanding the 
intricacies of image compression. 

On other hand, MATLAB can be used for the digital watermarking of a given image by implementing methods 
such as SVD and DWT (discrete Wavelet Transform). 
 

2. Material and method 
 

Singular Values Decomposition (SVD) is a numerical technique used to diagonalize matrices in numerical 
analysis [1]. SVD aims to approximate the dataset of large number of dimensions using fewer dimensions. SVD 
considers a highly variable, high dimensional data points and exposes the substructure of the original data by 
reducing the higher dimensional data into lower dimensional data. Exposure of the substructure orders the data 
from most variation to the least. This helps to find the region of most variation and then later SVD can be used for 
reduction. The Singular Value Decomposition of a matrix is a factorization of that matrix into three matrices. It has 
some interesting algebraic properties and conveys important geometrical and theoretical insights about linear 
transformation.  

SVD method can be used for: 
i. Image compression 

ii. Data compression and dimensionality reduction 
iii. Signal processing 
iv. Principal Component Analysis 
v. Solving linear systems of equations 

vi. Economics and Finance 
vii. Facial Recognition and Image Recognition 

 
 

2.1. Mathematics behind SVD: 
 

 

The SVD of 𝑚𝑥𝑛 matrix A is given by the Equation (1): 
 

𝐴 = 𝑈Σ𝑉𝑇  (1) 
 

where the matrix 
• 𝑈 is a 𝑚𝑥𝑚 matrix of the orthonormal eigenvectors of 𝐴𝐴𝑇 ;  
• Σ is a diagonal matrix with 𝑟 elements equal to the root of the positive eigenvalues of 𝐴𝐴𝑇 or 𝐴𝑇𝐴 (both 

matrices have the same positive eigenvalues anyway) 
• 𝑉𝑇  is transpose of a 𝑛𝑥𝑛 matrix containing the orthonormal eigenvectors of 𝐴𝑇𝐴. 

So, if we want to find the SVD for a given matrix we have to follow those steps: 
a) Finding the eigenvalues of 𝐴𝐴𝑇 
b) Finding the right singular vectors i.e orthonormal set of eigenvectors of 𝐴𝑇𝐴.  

c) Calculating the 𝑈 matrix as 𝑈𝑖 =
𝐴𝑉𝑖

Σii
 

 
 

2.2. Image compression 
 

The primary aim of image compression is to reduce the size of the image files for efficient storage and 
transmission while maintaining an acceptable level of image quality [15]. Types of Image Compression are: 
Lossless and Lossy. 

Lossless compression is a technique that reduces the size of a file without any loss of information. 
Lossy compression is a technique that reduces the size of a file by losing information. 
So, the difference between lossy and lossless is that in lossless compression after compression and 

decompression the data is identical to the original (resulting in perfect reconstruction). In contrast, in lossy 
compression, the reconstructed data after decompression is an approximation of the original. 

We can use image compression for: 
i. Web Design and Development: image compression is utilized to optimize image for web pages to improve 

loading time and enhance user experience. 
ii. Mobile Applications:  image compression is utilized to reduce storage space and accelerate loading time. 

iii. E-commerce Platforms: it is used to increase page load speed. 
iv. Social Media Platforms: we use it to facilitate faster image sharing 
v. Document Scanning: we use it for efficient storage and transmission in document management systems 

vi. Art and Design: to reduce the file size without compromising visual quality 
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vii. Video Compression  
viii. Gaming Industry: it is applied to optimize storage and enhance real-time rendering performance 
 

Our main goal is to determine the minimum number of singular values needed to ensure that our compressed 
image has a smaller size than the original. To do this we will use the SVD method. The steps we need to follow to 
compress an image using SVD method are shown in the Figure 1. 
 

 
Figure 1. A Scheme on how to compress an image using the SVD method. 
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We have implemented those steps on MATLAB and R programming languages. In MATLAB singular value 
decomposition method is implemented. The function is svd(). We know that MATLAB stands for MATrix 
LABoratory. It is recognized as a powerful programming language and environment that is particularly well-suited 
for numerical and matrix computations. One of MATLAB's strengths is its native support for matrices, making it 
an excellent choice for various scientific and engineering applications, including image processing. In MATLAB, an 
image is typically represented as a 2D matrix (for grayscale images) or a 3D matrix (for color images). For grayscale 
images, each element of the matrix corresponds to the intensity of a pixel, and for color images each element of 
the 3D matrix represents the intensity of a color channel (Red, Green, Blue). 

We can also use the R programming language for image compression by creating a Shinny app where the user 
can import the image they want and choose the number of singular values that they desire. After that, the program 
can display the compressed image. However, image compression in R may not be as efficient as in other 
programming languages like MATLAB. This is because of its primary focus on statistical computing. 

The metrics of Singular Value Decomposition are “Peak Signal-to-Noise Ratio (PSNR)” and “Compression 
Ratio”.  

The PSNR is used to measure the quality of an image after compression and it expressed in decibels and 
provides an indication of how well the compressed image preserves the quality of the original image. It is 
calculated by comparing the peak signal strength (maximum possible pixel value) to the noise introduced during 
compression. Higher PSNR value indicates better image quality. 

Compression ratio is a significant metric in image compression, indicating the degree to which an image has 
been reduced in size through compression. It is defined as the ratio of the size of the original image to the size of 
the compressed image. 

We have used Figure 2 as the original image, so this is the image that we want to compress. We have tried using 
different numbers of singular values. In Figure 3, we can see the compressed image where 11 singular values are 
used. The compression ratio and PSNR value when 11 singular values are used are 540.5542 and 10.4012, 
respectively. Figure 4 shows us a part of the first image that has been removed in order to compress the image 
using 11 singular values. Figure 5 helps us determine the suitable number of singular values needed to ensure that 
our compressed image has a smaller size than the original without losing important information. We can see that 
if we use more than 11 singular values, there is insignificant change in the value of the compression ratio. So, the 
ideal number of singular values that we can use is 11. 
 

 
Figure 2.  The original image. 

 
After importing Figure 2 into MATLAB, we apply the SVD method, resulting in the Figure 3. The new figure size 

is smaller than the original, enabling us to save the compressed image and occupy less memory space. This not 
only reduces memory space but also facilitates faster transmission. 

When compressing a given image, we need to remove a portion of it. The Figure 4 illustrates the segment of the 
original image that has been omitted for compression purposes. 

We can perform compression using different numbers of singular values. Each choice of singular values results 
in a different level of error. One of the metrics we can use to measure this error is compression ratio (Figure 5).  

For individuals unfamiliar with image compression and seeking to understand its functionality, they can use 
this shiny app (Figure 6). 

After using 24 singular values, we can now use 12 singular values to observe the difference (Figure 7). 
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Figure 3. Image compression using 11 singular values. 

 

 
Figure 4. The error or the part of part of the image that we “removed”. 

 

 
Figure 5. The relationship between the number of singular value and compression ratio. 
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Figure 6. Compressed image using 24 singular values. 

 

 
Figure 7. Compressed image using 12 singular values 

 
In Figures 6 and 7, you can observe a shiny app, an interactive platform for users. Within this app, you have the 

option to select an image from your browser. Afterward, you can choose the number of singular values you desire, 
and the compressed image will be displayed.  

It's worth noting that while R programming may not be the most commonly associated tool for methods like 
Singular Value Decomposition (SVD) and image compression., this shinny app exemplifies how R can serve as a 
versatile and user-friendly environment for such tasks. This app allows the users to explore and comprehend the 
effects of different compression parameters with ease. 

 
2.3. Digital watermarking 
 

In the context of digital watermarking, SVD can be utilized as a method to embed and extract watermark 
information in digital media. The general steps involved in digital watermarking are (Figure 8): 

i. Choose a watermark: decide what type of watermark you want to embed. It may be a text message, a logo, 
or a pattern. 

ii. Preprocess the original image: Before embedding the watermark, preprocess the original image is 
necessary (you can resize, normalize or color space conversion). 

iii. Embed the watermark: choose the embedding algorithm. This algorithm typically modifies pixel values or 
transforms the image in a way that is not easily perceptible. We have used the Discrete Wavelet Transform 
(DWT), implemented in MATLAB with the function “dwt2()”. DWT is part of Frequency Domain Techniques, 
embedding the watermark in the coefficients of wavelet-transformed image components. Another 
technique, which is part of Frequency Domain Techniques, is Discrete Fourier Transform (DFT). Other 
techniques, such as Spread Spectrum Techniques and Least Significant Bit (LSB) Embedding, are part of the 
Spatial Domain Techniques [14]. 
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iv. Postprocess the watermarked image: to enhance its quality or make it suitable for specific applications, 
we way need to postprocess the watermarked image. 

v. Add security measures: it may be used or not. If added, it can make encryption or scrambling techniques 
more difficult. 

vi. Save or transmit the watermarked image: it saves the watermarked image in a suitable format.  
vii. Extract the watermark: it is optional.  

viii. Verify and assess quality: Verify the effectiveness of the watermarking by extracting the watermark and 
comparing it with the original. Assess the quality of the watermarked image and evaluate the robustness of 
the watermark against common attacks.  

ix. Documentation and reporting 
x. Deployment and integration 

 

 
Figure 8.  The flow chart represents the digital watermarking process. 

 
In Figure 9, we can see the image in which we want to insert the watermark, Figure 10 is our watermark. In 

Figure 11 is the watermarked image. There we have decided that 90% of our watermarked image should be 
involved in the original image. 

 

 
Figure 9. Original image. 

 
After we choose the image that we want to add the watermark we have to choose our watermarked. In the 

image where we want to add the watermark firstly, we have implemented the SVD method.  
 



Advanced Engineering Science, 2024, 4, 103-112 
 

110 

 
Figure 10. Original watermarked. 

 
After we choose the watermarked, we have decided to implement the Discrete Wavelet Transform (DWT). 

 

 
Figure 11. Watermark an image to another image. 

 
For image compression, we previously used PSNR. It also serves as a measure for digital watermarking. What 

we have observed is that when we decide to involve a high percentage of the watermarked image in the original 
image, the PSNR is smaller. And this is what we expect because we know that if we add more elements of the 
watermarked image to the original one, it will change more of the original image. 
 
3. Results  
 

In Table 1, we present the image compression metrics obtained using SVD in the MATLAB programming 
language. For varying numbers of singular values, we observe different values of PSNR and Compression Ratio.  
 

Table 1. PSNR and compression ratio for different number of singular values. 
Number of singular Values PSNR Compression ratio 
11 10.4012 37.6809 
31 13.5235 13.3706 
51 
71 
91 

16.1671 
18.8835 
21.9250 

8.1272 
5.8379 
4.5548 
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We see that if we increase the number of singular values the value of PSNR will increase and the value of 
compression ratio will decrease. Our duty is to see where the increase of the PSNR value is insignificant and 
similarly where the decrease of the Compression Ratio is insignificant. 

In Table 2, we present the digital watermarking metrics obtained using SVD method and DWT algorithm in the 
MATLAB programming language. For varying numbers of singular values, we observe different values of PSNR and 
MSE.  
 

Table 2. PSNR and MSE value in watermarked image. 
Percentage of watermarked image PSNR MSE 
10% 33.9053 26.4574 
30% 24.3629 238.1165 
50% 
70% 
90% 

19.9259 
17.0034 
14.8205 

661.4347 
129.64 
214.30 

 
We can observe that when we add a low percentage of the watermarked image to the original one, the 

watermarked image closely resembles the original. Therefore, there is an insignificant change between the original 
image and the watermarked image. In other words, the watermark is less perceptible from the viewer if we use a 
low percentage of the watermarked image. 
 
 

4. Conclusion  
 

The SVD method has many different applications. We have decided to show you two of them: image 
compression and digital image watermarking. This is because we can use image compression to perform digital 
watermarking. First, we can compress the image, using the SVD technique to reduce its dimensionality while 
preserving essential information, and then we can use this compression as a "watermark". This dual application 
highlights the versatility of the SVD method in both enhancing data storage efficiency through compression and 
augmenting data security and authenticity through digital watermarking. 

When we use image compression and digital watermarking our responsibility is to identify where our original 
image loses its main information or where the point of minimal error occurs. To find this point we can use different 
measures. The mostly used measure is the PSNR (Pick Signal to Noise Ratio).  The higher the PSNR value, the better 
the quality of the image reconstruction. 

In image compression, when we increase the number of singular values, the PSNR value will also increase. 
Additionally, where there the PSNR increases, the compression ratio, which is another important measure, will 
decrease. In this case, the compressed image is closely resembling the original one. 

In digital watermarking, we have to decide how perceptible the watermarked we want to embed should be to 
the viewer. When we add a low percentage, our original image and the watermarked image are similar to each 
other. In this case, the mean square error will be smaller. This is what we expected because we have added a small 
piece of our watermarked to the original image. 

MATLAB programming language that is convenient to work with matrices, as every object in MATLAB is treated 
as a matrix. Singular Value Decomposition is implemented in MATLAB using “svd()” function. Additionally, 
MATLAB also implements the Discrete Wavelet Transform (DWT) through the “dwt2()” function. 
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