Influence of antimony doping on structural, morphological and optical properties of CuO powders

Main Article Content

Saadet Yıldırımcan

Abstract

In this study, pure and antimony (Sb) doped CuO nano and micro powders were produced by chemical bath deposition (CBD) technique. Their structural, morphological, elemental and optical properties were examined using XRD, SEM, EDX and UV-Vis techniques. According to crystallographic structure analysis, the pure and Sb doped CuO powders were obtained in monoclinic phase. The crystallite size of the powders decreased with the Sb concentration. The FE-SEM images clearly show that flower-like structures in both pure and Sb doped CuO powders were grown.  Moreover, the EDX spectra show that the peak intensity of Sb increases upon increasing doping concentration of Sb. The band gap energy value of the powders increased from 1.58 eV to 1.95 eV with increased Sb concentration in CuO. In addition, the key optical parameters such as refractive index, extinction coefficient, and both real and imaginary parts of the dielectric constant were calculated.

Article Details

How to Cite
Yıldırımcan, S. (2024). Influence of antimony doping on structural, morphological and optical properties of CuO powders. Advanced Engineering Science, 4, 120–129. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1573
Section
Articles

References

Al-Ghamdi, A. A., Khedr, M. H., Ansari, M. S., Hasan, P. M. Z., Abdel-Wahab, M. S., & Farghali, A. A. (2016). RF sputtered CuO thin films: Structural, optical and photo-catalytic behavior. Physica E: Low-dimensional Systems and Nanostructures, 81, 83-90. https://doi.org/10.1016/j.physe.2016.03.004

Wang, C., Fu, X. Q., Xue, X. Y., Wang, Y. G., & Wang, T. H. (2007). Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology, 18(14), 145506. https://doi.org/10.1088/0957-4484/18/14/145506

Siavash Moakhar, R., Hosseini‐Hosseinabad, S. M., Masudy‐Panah, S., Seza, A., Jalali, M., Fallah‐Arani, H., ... & Saliba, M. (2021). Photoelectrochemical water‐splitting using CuO‐based electrodes for hydrogen production: a review. Advanced Materials, 33(33), 2007285. https://doi.org/10.1002/adma.202007285

Wisz, G., Sawicka-Chudy, P., Sibiński, M., Starowicz, Z., Płoch, D., Góral, A., ... & Sosna-Głębska, A. (2021). Solar cells based on copper oxide and titanium dioxide prepared by reactive direct-current magnetron sputtering. Opto-Electronics Review, 29, 97-104. https://doi.org/10.24425/opelre.2021.139039

Jayatissa, A. H., Guo, K., & Jayasuriya, A. C. (2009). Fabrication of cuprous and cupric oxide thin films by heat treatment. Applied Surface Science, 255(23), 9474-9479. https://doi.org/10.1016/j.apsusc.2009.07.072

Quirino, M. R., Lucena, G. L., Medeiros, J. A., Santos, I. M. G. D., & Oliveira, M. J. C. D. (2018). CuO rapid synthesis with different morphologies by the microwave hydrothermal method. Materials Research, 21(6), e20180227. https://doi.org/10.1590/1980-5373-MR-2018-0227

Pramothkumar, A., Senthilkumar, N., Mercy Gnana Malar, K. C., Meena, M., & Vetha Potheher, I. (2019). A comparative analysis on the dye degradation efficiency of pure, Co, Ni and Mn-doped CuO nanoparticles. Journal of Materials Science: Materials in Electronics, 30(20), 19043-19059.

https://doi.org/10.1007/s10854-019-02262-4

Jayaprakash, J., Srinivasan, N., Chandrasekaran, P., & Girija, E. K. (2015). Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1803-1806. https://doi.org/10.1016/j.saa.2014.10.087

Liao, Y., Wang, D., Wang, H., Wang, T., Zheng, Q., Yang, J., ... & Lin, D. (2019). Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics. Ceramics International, 45(10), 13179-13186. https://doi.org/10.1016/j.ceramint.2019.03.254

Basith, N. M., Vijaya, J. J., Kennedy, L. J., & Bououdina, M. (2013). Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, 193-199. https://doi.org/10.1016/j.physe.2013.05.009

Yun, Y. D., Baek, S. K., Kim, J. S., Kim, Y. B., Jung, S. H., Kim, Y., & Cho, H. K. (2019). Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications. Thin Solid Films, 671, 120-126. https://doi.org/10.1016/j.tsf.2018.12.037

Ghosh, C. K., Popuri, S. R., Sarkar, D., & Chattopadhyay, K. K. (2011). Sb-doped CuAlO 2: widening of band gap and nonlinear J–E characteristics. Journal of Materials Science, 46, 1613-1621.

https://doi.org/10.1007/s10853-010-4975-5

Baturay, Ş. (2020). Structural and optical properties of Sb doped CuO films. Academic Platform-Journal of Engineering and Science, 8(1), 84-90. https://doi.org/10.21541/apjes.605822

Sánchez‐Rivera, M. J., Giner‐Sanz, J. J., Pérez‐Herranz, V., & Mestre, S. (2019). CuO improved (Sn, Sb) O2 ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology, 16(3), 1274-1285. https://doi.org/10.1111/ijac.13149

Pandey, A., Yadav, P., Fahad, A., Kumar, P., & Singh, M. K. (2024). Sb dopant-induced modifications in CuO–ZnO nanocomposites: Optical, electrical and magneto-dielectric insights for optoelectronic applications. Ceramics International, 50(12), 21417-21428. https://doi.org/10.1016/j.ceramint.2024.03.253

Wang, X. D., Xu, Y. F., Chen, B. X., Zhou, N., Chen, H. Y., Kuang, D. B., & Su, C. Y. (2016). 3D cathodes of cupric oxide nanosheets coated onto macroporous antimony‐doped tin oxide for photoelectrochemical water splitting. ChemSusChem, 9(20), 3012-3018. https://doi.org/10.1002/cssc.201601140

Baek, S. K., Kim, J. S., Kim, Y. B., Yoon, J. H., Lee, H. B. R., & Cho, H. K. (2017). Dual role of Sb-incorporated buffer layers for high efficiency cuprous oxide photocathodic performance: Remarkably enhanced crystallinity and effective hole transport. ACS Sustainable Chemistry & Engineering, 5(9), 8213-8221.

https://doi.org/10.1021/acssuschemeng.7b01889

Qin, H., Zhang, Z., Liu, X., Zhang, Y., & Hu, J. (2010). Room-temperature ferromagnetism in CuO sol–gel powders and films. Journal of Magnetism and Magnetic Materials, 322(14), 1994-1998.

https://doi.org/10.1016/j.jmmm.2010.01.021

Kaur, M., Muthe, K. P., Despande, S. K., Choudhury, S., Singh, J. B., Verma, N., ... & Yakhmi, J. V. (2006). Growth and branching of CuO nanowires by thermal oxidation of copper. Journal of Crystal Growth, 289(2), 670-675. https://doi.org/10.1016/j.jcrysgro.2005.11.111

Shashanka, R., & Kumara Swamy, B. E. (2020). Simultaneous electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application. SN Applied Sciences, 2, 1-10. https://doi.org/10.1007/s42452-020-2785-1

Shinde, S. K., Yadav, H. M., Ghodake, G. S., Kadam, A. A., Kumbhar, V. S., Yang, J., ... & Kim, D. Y. (2019). Using chemical bath deposition to create nanosheet-like CuO electrodes for supercapacitor applications. Colloids and Surfaces B: Biointerfaces, 181, 1004-1011. https://doi.org/10.1016/j.colsurfb.2019.05.079

Ebin, B., Gençer, Ö., & Gürmen, S. (2013). Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP). International Journal of Materials Research, 104(2), 199-206.

https://doi.org/10.3139/146.110853

Mote, V. D., Lokhande, S. D., Kathwate, L. H., Awale, M. B., & Sudake, Y. (2023). Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method. Materials Science and Engineering: B, 289, 116254. https://doi.org/10.1016/j.mseb.2022.116254

Raship, N. A., Sahdan, M. Z., Adriyanto, F., Nurfazliana, M. F., & Bakri, A. S. (2017). Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique. In AIP Conference Proceedings, 1788(1), 030121. https://doi.org/10.1063/1.4968374

Yildirimcan, S. (2023). Effect of ageing on electrical properties of Fe-doped CuO thin films deposited by spin coating technique. Indian Journal of Physics, 97(6), 1707-1716. https://doi.org/10.1007/s12648-022-02511-z

Ethiraj, A. S., & Kang, D. J. (2012). Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Research Letters, 7, 1-5. https://doi.org/10.1186/1556-276X-7-70

Berede, H. T., Andoshe, D. M., Gultom, N. S., Kuo, D. H., Chen, X., Abdullah, H., ... & Zelekew, O. A. (2024). Photocatalytic activity of the biogenic mediated green synthesized CuO nanoparticles confined into MgAl LDH matrix. Scientific Reports, 14(1), 2314. https://doi.org/10.1038/s41598-024-52547-w

Jhansi, K., Chandralingam, S., Reddy, M. N., Suvarna, P., Ashok, C., & Rao, M. K. (2016). CuO nanoparticles synthesis and characterization for humidity sensor application. Journal of Nanotechnology and Materials Science, 3(1), 10-14. https://doi.org/10.15436/2377-1372.16.020

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Mohammed, A. K., & Sumaila, A. (2019). Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), 045013.

https://doi.org/10.1088/2043-6254/ab52f7

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography, 32(5), 751-767.

https://doi.org/10.1107/S0567739476001551

Chethana, D. M., Thanuja, T. C., Mahesh, H. M., Kiruba, M. S., Jose, A. S., Barshilia, H. C., & Manjanna, J. (2021). Synthesis, structural, magnetic and NO2 gas sensing property of CuO nanoparticles. Ceramics International, 47(7), 10381-10387. https://doi.org/10.1016/j.ceramint.2020.06.129

Siddiqui, H., Parra, M. R., & Haque, F. Z. (2018). Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol− gel technique. Journal of Sol-Gel Science and Technology, 87, 125-135. https://doi.org/10.1007/s10971-018-4663-5

Buledi, J. A., Pato, A. H., Kanhar, A. H., Solangi, A. R., Batool, M., Ameen, S., & Palabiyik, I. M. (2021). Heterogeneous kinetics of CuO nanoflakes in simultaneous decolorization of Eosin Y and Rhodamine B in aqueous media. Applied Nanoscience, 11, 1241-1256. https://doi.org/10.1007/s13204-021-01685-y

Rani, M., Iqbal, J., Israr, M., Asim, M., Javaria, & Athar, T. (2022). CuO-decorated ZnO nanosheets with enhanced dielectric characteristics and visible light-driven photocatalytic activity towards organic pollutants. Journal of Nanoparticle Research, 24(10), 190. https://doi.org/10.1007/s11051-022-05559-4

Tamuly, C., Saikia, I., Hazarika, M., & Das, M. R. (2014). Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles. RSC Advances, 4(95), 53229-53236. https://doi.org/10.1039/c4ra10397a

Çetinkaya, S., Erat, S., & Aycibin, M. (2023). Simple and low-cost solution method for cobalt doped CuO nanostructured powder. Advanced Engineering Science, 3, 188-195.

Sangiorgi, N., Aversa, L., Tatti, R., Verucchi, R., & Sanson, A. (2017). Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64, 18-25. https://doi.org/10.1016/j.optmat.2016.11.014

Babu, M. H., Podder, J., Dev, B. C., & Sharmin, M. (2020). p to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and interfaces, 19, 100459. https://doi.org/10.1016/j.surfin.2020.100459

Rehman, S., Mumtaz, A., & Hasanain, S. K. (2011). Size effects on the magnetic and optical properties of CuO nanoparticles. Journal of Nanoparticle Research, 13, 2497-2507. https://doi.org/10.1007/s11051-010-0143-8

Koshy, J., & George, K. C. (2015). Annealing effects on crystallite size and band gap of CuO nanoparticles. International Journal of NanoScience and Nanotechnology, 6(1), 1-8.

Mayakannan, M., Gopinath, S., & Vetrivel, S. (2020). Synthesis and characterization of antibacterial activities nickel doped cobalt oxide nano particles. Materials Chemistry and Physics, 242, 122282.

https://doi.org/10.1016/j.matchemphys.2019.122282

Dwech, M. H., Aadim, K. A., & Mohsen, M. T. (2019, August). The effect of a number of laser pulses on optical properties of CuO thin films deposited by pulsed laser deposited (PLD) technique at 673K. AIP Conference Proceedings, 2144(1), 030024. https://doi.org/10.1063/1.5123094

Ravindra, N. M., Auluck, S., & Srivastava, V. K. (1979). On the Penn gap in semiconductors. Physica status solidi (b), 93(2), K155-K160. https://doi.org/10.1002/pssb.2220930257

Bharti, D. B., & Bharati, A. V. (2017). Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence, 32(3), 317-320. https://doi.org/10.1002/bio.3180

Rami, J. M., & Patel, C. D. (2023) Exploration of significant optical parameters of selected metal oxide nanoparticles using optical spectroscopy. Nano World Journal, 9, 601-605.

https://doi.org/10.17756/nwj.2023-s1-116