Industrial internet of things (IIoT) in energy sector

Main Article Content

Çetin Önder İncekara

Abstract

Internet of Things (IoT) represents a new production reality. Since 2000 the usage of IoT has been steadily increased in almost every sector, i.e., industry, business, entrepreneurs. The information derived from the data gathered from the new devices connected to the internet, i.e., IoT, can be used to develop new services, improve productivity and efficiency, improve decision making in real time, resolve critical problems and create innovative experiences. “Industry 4.0” concept has the flexibility to achieve interoperability between the different industrial engineering systems. Industrial Internet of Things (IIoT) is used to transfer the data from systems that monitor and control the industrial equipment to data processing systems that cloud computing has shown to be important tools for meeting processing requirements by using Wi-Fi, radio, satellite or cellular networks. In the study interviews with energy experts/managers are performed and fuzzy multi objective mathematical model is developed to calculate IIoT in energy sector. IoT technologies offer greater availability of information throughout the chain of value, allowing for amortization of better tools for decision making. Using sensor devices in energy sector offers automated execution of the processes and the usage of Machine Learning (ML) and Artificial Intelligence (AI) in energy industry allow systems to communicate with each other, making their own decisions. IIoT enables real-time quality monitoring, which helps identify the nonconformities within the processes and energy production sector easily.

Article Details

How to Cite
İncekara, Çetin Önder . (2023). Industrial internet of things (IIoT) in energy sector. Advanced Engineering Science, 3, 21–30. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/839
Section
Articles

References

Chan, F. T., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417-431.

Wang, C. (2015). A study of membership functions on mamdani-type fuzzy inference system for industrial decision-making. Lehigh University.

Sahu, A. K., Datta, S., & Mahapatra, S. S. (2016). Evaluation and selection of resilient suppliers in fuzzy environment: Exploration of fuzzy-VIKOR. Benchmarking: An International Journal, 23(3), 651-673

Satrovic, E. (2018). The human development relies on renewable energy: Evidence from Turkey. 3rd International Energy & Engineering Congress, 19-27

İncekara, Ç. Ö., & Oğulata, S. N. (2011). Enerji darboğazında ülkemizin alternatif enerji kaynakları. Sosyal ve Beşeri Bilimler Dergisi, 3(1).

İncekara, C. O., & Oğulata, S. N. (2012). EU and Turkey’s Energy Strategies. International Journal of Economics and Finance Studies, 4(2), 35-43.

Incekara, C. O., & Ogulata, S. N. (2017). Turkey’s energy planning considering global environmental concerns. Ecological Engineering, 102, 589-595.

İncekara, Ç. Ö. (2018). Ülkemizdeki Enerji Santral Yatırımlarının AHP Yöntemi ile Değerlendirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 185-196.

Incekara, C. O. (2019). Use of an optimization model for optimization of Turkey’s energy management by inclusion of renewable energy sources. International Journal of Environmental Science and Technology, 16(11), 6617-6628.

Incekara, Ç. Ö. (2019). Türkiye ve AB’nin enerji hedefleri. Journal of Turkish Operations Management, 3(2), 298-313.

Incekara, C.O. (2019c). Turkey's Energy Management Plan by Using Fuzzy Modeling Approach. Scholars' Press, ISBN-10: 6138829697, Book, 38-52.

İncekara, Ç. Ö. (2020). Türkiye’nin elektrik üretiminde doğalgaz talep tahminleri. Journal of Turkish Operations Management, 4(2), 494-508.

İncekara, Ç. Ö. (2020). Evaluation of Turkey’s International Energy Projects by Using Fuzzy Multi-Criteria Decision Making Methods. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(9), 206-217. https://doi.org/10.38065/euroasiaorg.143

İncekara, Ç. Ö. (2020). Turkey's natural gas demand projections. Ejons International Journal, 4(15), 489-505.

İncekara, Ç. Ö. (2020). Bulanık mantık ile sanayii sektöründe ISO 50001 enerji yönetim sistemi uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(6), 991-1013.

İncekara, Ç. Ö. (2020). Enerji Sektöründe Faaliyet Gösteren Bir İşletmede İş Sağlığı ve Güvenliği Yönetim Sistemi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 4(1), 152-177.

İncekara, Ç. Ö. (2021). Bulanik TOPSIS ve bulanik vikor yöntemleriyle bir enerji şirketinde kurumsal hafizanin oluşturulmasi. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(17), 1-20. https://doi.org/10.38065/euroasiaorg.589

Incekara, C. O. (2021). Post-COVID-19 ergonomic school furniture design under fuzzy logic. Work, 69(4), 1197-1208.

İncekara, Ç. Ö. (2021). Dünya’nin ve Türkiye’nin doğal gaz talep senaryosu. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(17), 44-57.

İncekara, Ç. Ö. (2021). Global Natural Gas Demand Projections under Fuzzy Logic. Ejons International Journal, 5(18), 367-385. https://doi.org/10.38063/ejons.430

Incekara, C. O. (2022). Designing ergonomic post-Covid-19 school furniture. South African Journal of Industrial Engineering, 33(2), 37-48.

İncekara, Ç. Ö. (2022). Sigorta eksperlerinin dask sigortasi değerlendirmelerinin bulanik mantik altinda incelenmesi. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(21), 14-41. https://doi.org/10.38065/euroasiaorg.952

İncekara, Ç. Ö., & Lala. S. (2023). Enerji projelerinde arazi edinim faaliyetleri ve arazi değerlemesi. Geomatik, 8(1), 61-71.

İncekara, Ç. Ö. (2022). Industrial internet of things (IIoT) in energy sector. Advanced Engineering Days (AED), 5, 181-184.