The development and maintenance of the liver tissue with the help of Kupffer cells

Main Article Content

Harika Topal Önal
Furkan Ayaz


Kupffer cells are a group of star-shaped cells in hepatic sinusoids responsible for the formation of the liver and immunological-inflammatory reactions. Macrophages first begin to improve in the yolk sac and mature into kupffer cells during pregnancy. Kupffer cells are a component of the mononuclear phagocytic system, which plays a considerable role in the repair of liver damage by promoting the secretion of cytokines and chemokines involved in the hepatic and systemic response. In case of a disease situation, kupffer cells become pathologically active from the tolerogenic feature, which can lead to hepatocellular damage. Therefore, as in other components of the immune system, the continuity of proper kupffer cell activity has an important role in maintaining the vitality of the organism. A decrease in the number or loss of function of kupffer cells can lead to inflammatory conditions as a result of pathogen invasion of the liver. This brief review study, it is aimed to examine the research evaluating the functions of kupffer cells in liver development and repair.

Article Details

How to Cite
Önal, H. T. ., & Ayaz, F. . (2023). The development and maintenance of the liver tissue with the help of Kupffer cells. Advanced Engineering Science, 3, 98–102. Retrieved from


Li, L., Cui, L., Lin, P., Liu, Z., Bao, S., Ma, X., ... & Hui, L. (2023). Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell, 30(3), 283-299.

Fan, G., Li, Y., Zong, Y., Suo, X., Jia, Y., Gao, M., & Yang, X. (2023). GPAT3 regulates the synthesis of lipid intermediate LPA and exacerbates Kupffer cell inflammation mediated by the ERK signaling pathway. Cell Death & Disease, 14(3), 208.

Jenkins, S. J., Ruckerl, D., Cook, P. C., Jones, L. H., Finkelman, F. D., Van Rooijen, N., ... & Allen, J. E. (2011). Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. science, 332(6035), 1284-1288.

Li, L., Cui, L., Lin, P., Liu, Z., Bao, S., Ma, X., ... & Hui, L. (2023). Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell, 30(3), 283-299.

Mass, E., Nimmerjahn, F., Kierdorf, K., & Schlitzer, A. (2023). Tissue-specific macrophages: how they develop and choreograph tissue biology. Nature Reviews Immunology, 1-17.

Cline, M. J., & Moore, M. A. S. (1972). Embryonic origin of the mouse macrophage. Blood, 39(6), 842-849.

Bell, D. N. F., & Kirwan, F. X. (1981). Further thoughts on return migration: A rejoinder to Gordon (1981). Regional Studies, 15(1), 63-66.

Anhalt, G. J., Kim, S., Stanley, J. R., Korman, N. J., Jabs, D. A., Kory, M., ... & Labib, R. S. (1990). Paraneoplastic pemphigus: an autoimmune mucocutaneous disease associated with neoplasia. New England Journal of Medicine, 323(25), 1729-1735.

Fushimi, K., Uchida, S., Harat, Y., Hirata, Y., Marumo, F., & Sasaki, S. (1993). Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 361(6412), 549-552.

Li, Q., Hatakeyama, M., & Kitaoka, T. (2023). Polysaccharide Nanofiber‐Stabilized Pickering Emulsion Microparticles Induce Pyroptotic Cell Death in Hepatocytes and Kupffer Cells. Small, 2207433.

Thurman, R. G. (1998). II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275(4), G605-G611.

Fakhrzadeh, L., Laskin, J. D., & Laskin, D. L. (2004). Ozone-induced production of nitric oxide and TNF-α and tissue injury are dependent on NF-κB p50. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287(2), L279-L285.

Mochida, S., Ogata, I., Hirata, K., Ohta, Y., Yamada, S., & Fujiwara, K. (1990). Provocation of massive hepatic necrosis by endotoxin after partial hepatectomy in rats. Gastroenterology, 99(3), 771-777.

Lehner, M. D., Ittner, J., Bundschuh, D. S., van Rooijen, N., Wendel, A., & Hartung, T. (2001). Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar typhimurium infection despite attenuated cytokine response. Infection and immunity, 69(1), 463-471.

Tomioka, M., Iinuma, H., & Okinaga, K. (2000). Impaired Kupffer cell function and effect of immunotherapy in obstructive jaundice. Journal of Surgical Research, 92(2), 276-282.

Ehlers, S., Mielke, M. E., Blankenstein, T., & Hahn, H. (1992). Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. The immediate early phase in innate resistance and acquired immunity. Journal of immunology (Baltimore, Md.: 1950), 149(9), 3016-3022.

Gäbele, E., Brenner, D. A., & Rippe, R. A. (2003). Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Frontiers in Bioscience-Landmark, 8(4), 69-77.

Xidakis, C., Ljumovic, D., Manousou, P., Notas, G., Valatas, V., Kolios, G., & Kouroumalis, E. (2005). Production of pro-and anti-fibrotic agents by rat Kupffer cells; the effect of octreotide. Digestive diseases and sciences, 50, 935-941.

Okabayashi, K., Ohtani, M., Morio, M., & Kajihara, H. (1990). Structural changes of Kupffer cells in rat liver following experimental thermal injury. Burns, 16(2), 83-88.

Callery, M. P., Kamei, T., & Flye, M. W. (1990). Kupffer cell blockade increases mortality during intra-abdominal sepsis despite improving systemic immunity. Archives of Surgery, 125(1), 36-41.

Yıldırım, M., Bayol, Ü., Akdağ, A., Balıoğlu, T., Erkan, N., Albayrak, D., & Sayın, A. Deneysel Peritoneal Sepsis Modelinde Splenektomi Sonrası Karaciğer Kupffer Hücre Prolifesyonunun Etkileri. İzmir Eğitim Ve Araştırma Hastanesi Tıp Dergisi, 10(4), 165-168.

Chaudry, I. H., Zellweger, R., & Ayala, A. (1995). The role of bacterial translocation on Kupffer cell immune function following hemorrhage. Progress in clinical and biological research, 392, 209-218.

Tighe, D., Moss, R., Boghossian, S., Heath, M. F., Chessum, B., & Bennett, E. D. (1989). Multi-organ damage resulting from experimental faecal peritonitis. Clinical Science, 76(3), 269-276.

Steinhoff, G. (1989). Sequential analysis of macrophage tissue differentiation and Kupffer cell exchange after human liver transplantation. Cells of the hepatic sinusoid, 2, 406-409.

Chiang, D. J., Pritchard, M. T., & Nagy, L. E. (2011). Obesity, diabetes mellitus, and liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300(5), G697-G702.

Chiu, H., Gardner, C. R., Dambach, D. M., Durham, S. K., Brittingham, J. A., Laskin, J. D., & Laskin, D. L. (2003). Role of tumor necrosis factor receptor 1 (p55) in hepatocyte proliferation during acetaminophen-induced toxicity in mice. Toxicology and applied pharmacology, 193(2), 218-227.

Cohen, J. I., Chen, X., & Nagy, L. E. (2011). Redox signaling and the innate immune system in alcoholic liver disease. Antioxidants & redox signaling, 15(2), 523-534.

DiScipio, R. G., Daffern, P. J., Jagels, M. A., Broide, D. H., & Sriramarao, P. (1999). A comparison of C3a and C5a-mediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. The Journal of Immunology, 162(2), 1127-1136.

Thapaliya, S., Wree, A., Povero, D., Inzaugarat, M. E., Berk, M., Dixon, L., ... & Feldstein, A. E. (2014). Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Digestive diseases and sciences, 59, 1197-1206.

Miura, K., Kodama, Y., Inokuchi, S., Schnabl, B., Aoyama, T., Ohnishi, H., ... & Seki, E. (2010). Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology, 139(1), 323-334.

Monsinjon, T., Gasque, P., Chan, P., Ischenko, A., Brady, J. J., & Fontaine, M. (2003). Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. The FASEB Journal, 17(9), 1003-1014.

Mutlu, E., Keshavarzian, A., Engen, P., Forsyth, C. B., Sikaroodi, M., & Gillevet, P. (2009). Intestinal dysbiosis: a possible mechanism of alcohol‐induced endotoxemia and alcoholic steatohepatitis in rats. Alcoholism: Clinical and Experimental Research, 33(10), 1836-1846.

Neyrinck, A. M., Cani, P. D., Dewulf, E. M., De Backer, F., Bindels, L. B., & Delzenne, N. M. (2009). Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochemical and biophysical research communications, 385(3), 351-356.

Gustot, T., Lemmers, A., Moreno, C., Nagy, N., Quertinmont, E., Nicaise, C., ... & Le Moine, O. (2006). Differential liver sensitization to toll‐like receptor pathways in mice with alcoholic fatty liver. Hepatology, 43(5), 989-1000.

Stärkel, P., De Saeger, C., Strain, A. J., Leclercq, I., & Horsmans, Y. (2010). NFκB, cytokines, TLR 3 and 7 expression in human end‐stage HCV and alcoholic liver disease. European journal of clinical investigation, 40(7), 575-584.

Most read articles by the same author(s)