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 Landslides are one of the important disasters that have negative effects on people. In this 
study, the Landslide Susceptibility Map of Tokat (Turkey) province was produced. Slope 
classes, elevation classes, land use classes, geology classes, aspect classes and proximity to 
fault lines classes were used during the study. The Weight of Evidence method was applied to 
determine the relationship between the classes of the parameters and the landslide events. 
Random Forest method was used to determine the weights between parameters. Weighted 
Overlay operation was applied to the classified and weighted map data using ArcGIS program. 
As a result of the process, the data were divided into 5 classes and the Landslide Susceptibility 
Map was produced. When susceptibility classes are examined, it was seen that 92,42% of the 
old landslide events occurred in high and very high classes. 

 
 

 
 
 

 

Disasters are events that cause material and moral 
damages in the society they affect and cause great 
problems in terms of the consequences they cause in the 
flow of daily life. The landslides can be defined as the 
downward movement or sliding of parts such as soil and 
rocks, under the influence of gravity or external factors 
such as earthquakes and continuous rains (AFAD, 
2014).  

When examining the negative effects caused by 
landslides, it is necessary to know the spatial 
distribution and inventory information of past 
landslides. Using the available inventory data, landslide 
susceptibility analysis, risk and hazard values can be 
determined (Van Westen et al., 2008). Landslide 
susceptibility analysis, which reveals areas susceptible 
to possible future landslides, reveals the desire for any 
landslide to take place (Guzzetti et al., 2006). Landslide 
susceptibility maps are of great importance in 
predicting future landslides and providing land use 
planning (Basara et al., 2020). 

Weight of Evidence (WoE) and Random Forest (RF) 
were used as methods in the study. Slope, Aspect, 

Elevation, Geology, Land Use, Proximity to fault lines 
were used as materials. As a result of this study, the 
landslide susceptibility map divided into 5 sub-sections 
was produced. The produced map was compared with 
the previous landslide events in the region. According to 
this comparison, an accuracy of 92,42% was found. 

In this study, the Landslide Susceptibility Map of 
Tokat (Turkey) Province was produced. Location Map 
given in Figure 1. 

 
Figure 1. Location Map 
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This study is an extended version of the paper 
presented at the 2nd IGD symposium (Basara & Sisman, 
2021). 

 

 

Although there are many landslide susceptibility 
map applications in the literature (Aleotti & Chowdhury, 
1999; Lee & Talib, 2005; Tetik Biçer, 2017), there is no 
consensus on the methods and parameters used in these 
applications. There are a lot of landslide susceptibility 
analysis methods like Frequency Ratio, Analytical 
Hierarchy Process, Weight of Evidence, Logistic 
Regression, Fuzzy Logic and Artificial Neural Networks 
(Basara et al., 2021). 

In this study, the Weight of Evidence method which 
is one of the statistical methods and the Random Forest 
Algorithm which is one of the machine learning 
methods, were used together. 

 

The Weight of Evidence method has been 
mathematically expressed by Van Westen et al. (2003) 
and Regmi et al. (2010).  In this study, the weights of the 
subcategories of the factors affecting the landslide were 
determined using the equation 1-3 (Regmi et al., 2010; 
Ozdemir & Altural, 2013). 

 

W+ =  ln[ (A1/(A1 + A2)) / (A3/(A3 + A4)) ]   (1) 
 

W− =  ln[ (A2/(A1 + A2)) / (A4/(A3 + A4)) ]   (2) 
 

C = (W +) − (W−)   (3) 
 

In the equation, A1 refers to the landslide areas in a 
selected subcategory, A2 refers to the total landslide 
areas outside the selected category, A3 refers to the 
areas with no landslides in the selected category, and A4 
refers to the total landslide-free areas other than the 
selected category. While A1 + A2 refers to the total 
landslide areas, A3 + A4 refers to the total landslide-free 
areas in the study area. (Regmi et al., 2010). 

The difference between the W + and W- weights is 
called the contrast of the weights (C). The C value shows 
the final positional relationship between the landslide 
event and the forecast variable. A value equal to zero 
indicates that the subcategory of the factor causing the 
landslide is not important for the analysis. Positive 
contrast indicates a positive positional relationship, 
negative contrast indicates the opposite (Ozdemir & 
Altural, 2013). 
 

Random Forest Method is one of the collective 
learning algorithms based on using many decision tree 
models together to solve a specific classification and 
regression problem (Breiman, 2001). The algorithm is 
based on the principle of combining the estimates made 
by each of the decision trees that make up the forest and 
making the final decision for the relevant sample in the 
process of estimating a sample with an unknown class 
label (Kuncheva & Whitaker, 2003). 

 

𝑃 =  
1

𝐾
∑ 𝑇𝐾

𝑘=1    (4) 

 

GE = 𝑃𝑥,𝑦  ( mg (x, y) < 0 ) (5) 
 

mg(x, y) = avkI(hk(x) = y) − maxj≠yavkI(hk(x) = j) (6) 
 

There is no standard for the parameters to be used 
in landslide susceptibility analysis studies. Therefore, 
the parameters may differ depending on the area to be 
studied. When the parameters used in the landslide 
susceptibility analysis were analyzed statistically, the 
rates in Table 1 were obtained (Tetik Biçer, 2017). 

Table 1. Usage Rates of Parameters 

Landslide 
Parameters 

Usage 
Rate (%) 

Landslide 
Parameters 

Usage 
Rate (%) 

Slope 86,47 Land Use 46,62 

Lithology 67,29 Curvature 40,60 

Aspect 59,77 Fault Lines 28,57 

Elevation 55,64 NDVI 24,06 

Drainage Density 50,75 Soil Groups 23,68 

GIS is important for collecting and processing 
geographic data of objects. Transforming data into 
geographic information with geographic analysis and 
viewing geographic data helps to plan activities (Basara 
et al., 2021). 

In this study, Slope, Aspect, Elevation, Geology, 
Land Use, Proximity to Fault Lines and Landslide 
Inventory Map were used. The parameters to be used in 
the study were mapped with the help of ArcGIS. Maps of 
the material are given in Figure 2-8. 

3.1. Slope 
 

Slope is the main stability parameter that affects 
shear and normal stresses on the surface. It is more 
common among researchers that the slope angle is 
directly proportional to the landslide risk (Karslı et al., 
2009; Baeza & Corominas, 2001). Statistical analysis of 
slopes causing landslides should be made and a decision 
should be made accordingly (Basara, 2021). 

 
 

The general formula of the Random Forest 
algorithm is defined as in Equation 4. Since the 
algorithm produces K number of decision trees, the 
predicted value (P) is given by the average of the 
predicted values (T) in all trees (Costa et al., 2020). 
Generalization error in Random Forest algorithm is 
defined as in Equation 6. The "x and y" values here are 
the landslide conditioning factors showing the x-y space 
and the probability above mg and are defined as in 
Equation 5-6. The "I" values here measure the extent to 
which the average number of votes in random vectors 
exceeds the average vote for any other output for 
correct output (Masetic et al., 2016). 

2. Method 

2.1. Weight of evidence method (WoE) 
 

2.2. Random forest algorithm (RF)  

3. Material
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3.2. Aspect 
 

Aspect can be mentioned on the slopes of the same 
object facing different directions. Aspect is the 
parameter that shows the direction of the land surface 
relative to the sun's rays. The direction in which the 
tangent plane is facing at any point on the surface (Dağ, 
2007). 

 

3.3. Elevation 
 

Topographic features vary with altitude. Elevation 
causes topographical differences in the study area. 
Altitude controls temperature and vegetation. 
Landslides, rock and soil properties and other 
geotechnical parameters are associated with altitude 
values (Guzzetti et al., 2009). 

 

3.4. Geology 
 

Landslide events are directly related to soil 
properties such as strength, permeability and hardness 
(Baeza & Corominas, 2001). Since the geological 
features will give important information about the 
landslide sensitivity of the study area, it should be 
evaluated correctly (Guzzetti et al., 1999). 

 

The land use can be the reason of landslide events. 
Thus, the relationship between the areas like artificial, 
agricultural, forest, wetlands and water with sparse and 
dense vegetation and landslides should be evaluated 
(Basara et al., 2021). 

 

Some landslides can be associated with fault lines 
areas because of weakness of the material surrounding 
them.  The more buffer zone should be created, taking 
into account the different proximity for proximity to 
fault lines. (Wachal & Hudak, 2000). Some inferences 
can be made as a result of field observations. In this 
context, it was determined that most of the landslides 
occurred in regions very close to the faults. (Gökceoglu 
& Aksoy, 1996). 

 

Landslide inventory is defined as data containing 
information about the location, type, activity and 
physical characteristics of landslides in a region. The 
information about past landslides are obtained as the 
first step of landslide susceptibility. It is thought that the 
future landslides may occur under conditions similar to 
the past landslides. (Varnes, 1984). 

For this reason, the Landslide Inventory Map of the 
study area was created by using the landslide events 
1950 - 2021. 

 

 
Figure 2. Slope Map 
 

 
Figure 3. Aspect Map 
 

 
Figure 4. Elevation Map 
 

 
Figure 5. Geology Map 

3.5. Land use 
 

3.6. Proximity to faults  

3.7. Landslide inventory 
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Figure 6. Land Use Map 
 

 
Figure 7. Proximity to Fault Lines Map 
 

 
Figure 8. Landslide Inventory Map 

 

 

In this study, the landslide susceptibility map was 
obtained in two stages. In the first part, the Weight of 
Evidence (WoE) method was applied. Landslide impact 
priorities of parameter subclasses were determined. In 
the second part, the Random Forest (RF) algorithm is 
applied. Woe data was used in the application of RF. In 
this way, the priorities of the parameters among each 
other were determined. 

The relationship of the maps with the landslide 
inventory map was determined using the Weight of 
Evidence (WoE) Method. The maps were reclassified 
according to the results of the analysis. The data 
obtained according to the Weight of Evidence (WoE) 
method are given in table 2-7. 

 
 

Table 2. Aspect Classes 

Attribute Landslide area Total area WoE 

North 46,76 km² 1317,89 km² 0,0945 

South 48,81 km² 1306,85 km² 0,1566 

Others 232,66 km² 7349,36 km² -0,1310 

Flat 0,28 km² 43,39 km² -1,6471 

 

Table 3. Geology Classes 

Attribute Landslide area Total area WoE 

Cretaceous 6,07 km² 407,14 km² -0,8300 

Eocene 38,78 km² 783,26 km² 0,4744 

Holocene 8,54 km² 1043,15 km² -1,5004 

Mesozoic 10,74 km² 971,05 km² -1,1804 

Neogene 3,36 km² 250,12 km² -0,9289 

Oligocene 3,52 km² 649,02 km² -1,8865 

Paleozoic 0,26 km² 3,43 km² 0,8992 

Quaternary 0,06 km² 72,22 km² -3,7744 

Unknown 155,76 km² 3944,05 km² 0,3386 

Upper Cretaceous 101,68 km² 1897,02 km² 0,6777 

 

Table 4. Slope Classes 

Attribute Landslide area Total area WoE 

0 – 2,5 degree 4,31 km² 1220,36 km² -2,3784 

2,5 – 5 degree 17,53 km² 1169,98 km² -0,8736 

5 – 10 degree 94,69 km² 2432,80 km² 0,2415 

10 – 15 degree 104,96 km² 2119,40 km² 0,5816 

15 – 20 degree 66,70 km² 1510,13 km² 0,3752 

20 – 25 degree 26,93 km² 880,08 km² -0,0781 

25 degree+ 13,39 km² 684,72 km² -0,5610 

 

Table 5. Elevation Classes 

Attribute Landslide area Total area WoE 

173 – 250 m 0,14 km² 131,32 km² -3,5079 

250 – 500 m 5,52 km² 528,47 km² -1,2061 

500 – 750 m 38,39 km² 1240,21 km² -0,0677 

750 – 1000 m 103,66 km² 1811,46 km² 0,7679 

1000 – 1250 m 116,33 km² 2936,22 km² 0,2896 

1250 – 1500 m 46,35 km² 2324,58 km² -0,6265 

1500 m+ 18,16 km² 1048,20 km² -0,7091 

 

Table 6. Land Use Classes 

Attribute Landslide area Total area WoE 

CORINE.100 4,14 km² 135,52 km² -0,0759 

CORINE.211 39,25 km² 808,52 km² 0,4526 

CORINE.212 12,31 km² 1337,34 km² -1,4041 

CORINE.241 134,27 km² 1919,02 km² 1,1182 

CORINE.310 77,45 km² 3105,39 km² -0,3883 

CORINE.320 49,65 km² 1966,29 km² -0,3261 

CORINE.330 11,25 km² 669,71 km² -0,7213 

CORINE.400 0,00 km² 2,38 km² -11,2991 

CORINE.500 0,31 km² 72,31 km² -2,0788 

 
 
 
 

4. Results  
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Table 7. Proximity to Fault Lines Classes 

Attribute Landslide area Total area WoE 

0 - 1 km 29,84 km² 1094,26 km² -0,2117 

1 - 2,5 km 52,81 km² 1563,53 km² 0,0358 

2,5 - 5 km 91,08 km² 2112,37 km² 0,3746 

5 - 10 km 84,38 km² 2829,21 km² -0,1346 

10 km+ 70,61 km² 2421,09 km² -0,1573 

 

The Random Forest (RF) Algorithm was used to 
determine the stature of the parameters relative to each 
other. In the implementation of this process, the data 
obtained as a result of the Weight of Evidence (WoE) 
method was used. The data obtained as a result of the 
Random Forest  (RF) Algorithm are given in Table 8. 

 

Table 8. Random Forest Data 

Parameters 
Variable 

İmportance 
Standard 

Deviation 
Weight 

Land Use 66,909 0,261 27 % 

Aspect 10,073 0,036 4 % 

Slope 40,407 0,172 16 % 

Proximity to Faults 35,912 0,243 14 % 

Geology 42,681 0,392 17 % 

Elevation 52,508 0,215 21 % 

 

Finally, the Landslide Susceptibility Map was 
produced by processing the data with Weighted Overlay 
analysis. The map produced was reclassified 5 as very 
low, low, medium, high and very high. Landslide 
susceptibility map is given in Figure 9. 

The created landslide susceptibility map was 
compared with the parameter classes used in the study. 
Risk values of parameter classes are given in Table 9. 

 

Table 9. Risk Values of Parameter Classes 

Parameters Classes Class Risk (%) 
Class Area 

(%) 

Slope 0 – 2,5 degree 12,49 12,18 

 2,5 – 5 degree 45,14 11,66 

 5 – 10 degree 74,53 24,31 

 10 – 15 degree 84,92 21,14 

 15 – 20 degree 87,10 15,08 

 20 – 25 degree 82,15 8,81 

 25 degree+ 66,69 6,82 

Elevation 173 – 250 m 0,40 1,30 

 250 – 500 m 32,79 5,27 

 500 – 750 m 53,79 12,37 

 750 – 1000 m 75,92 18,08 

 1000 – 1250 m 78,13 29,30 

 1250 – 1500 m 67,97 23,21 

 1500 m+ 66,74 10,48 

Aspect North 68,45 13,18 

 South 68,56 13,06 

 Others 67,90 73,33 

 Flat 0,80 0,43 

Land Use CORINE.100 41,43 1,35 

 CORINE.211 76,66 8,08 

 CORINE.212 5,45 13,35 

CORINE.241 93,81 19,15 

CORINE.310 81,41 
70,90 
47,25 

0,00 
0,59 

31,01 

CORINE.320 
CORINE.330 
CORINE.400 
CORINE.500 

19,63 
6,69 

0,02 

0,72 

Geology Cretaceous 39,83 4,07 

 Eocene 84,59 7,82 

 Holocene 19,31 10,41 

 Mesozoic 38,86 9,73 

 Neogene 39,08 2,49 

 Oligocene 18,85 6,50 

 Paleozoic 100,00 0,03 

 Quaternary 0,15 0,72 

 Unknown 88,46 39,37 

 Upper Cretaceous 88,51 18,84 

Proximity 0 - 1 km 60,49 10,91 

to Fault 1 - 2,5 km 64,09 15,61 

Lines 2,5 - 5 km 72,25 21,09 

 5 - 10 km 67,79 28,26 

 10 km+ 69,50 24,13 
 

When the data in the table are examined, it has 
been determined that slope, elevation, land use and 
geology parameters are important for the study area. 
Parameter subclasses were evident in the creation of 
different risk groups. 

It has been determined that the aspect parameter is 
not important for the study area as there is no 
distinctiveness in the subgroups. In future studies, the 
parameter can be made meaningful by examining it in 
different classes. 

The fact that the risk ratios in the subgroups were 
very close to each other showed that the parameter of 
proximity to the fault lines was not important for the 
study area. In future studies, the parameter can be made 
meaningful by examining it with different proximity 
classes. 

 

The areas and rates of the landslide susceptibility 
classes are given in Table 10. 

 

Table 10. Landslide Susceptibility Classes 

 
Landslide 

area 
(km²) 

Total 
area 

(km²) 

Landslide 
incident 

(%) 

Total 
area 
(%) 

Very Low 0,00 187,79 0,00 1,88 

Low 0,82 878,77 0,25 8,78 

Medium 24,13 2160,46 7,33 21,58 

High 125,91 4905,13 38,25 48,99 

Very High 178,35 1880,26 54,18 18,78 

When susceptibility classes are examined it was 
seen that 92,42% of the old landslide events occurred in 
high and very high class, 7,33% occurred in middle class 
and 0,25% occurred in low and very low class. 

In the spatially analysis of landslide events, it was 
seen that the sensitivity classes are examined spatially, 
high-risk areas constitute 67,77% of all areas, medium-
risk areas constitute 21,58% of all areas and low-risk 
areas constitute 10,65% of all areas. 

Table 9 is continued.

5. Discussion 

6. Conclusion 

ACER
Line

ACER
Line

ACER
Line
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Method and parameter selection for landslide 
susceptibility analysis is a step that needs attention. In 
the result of working, it was determined that the sub-
classification step of the parameter is as important as 
the parameter selection in landslide susceptibility 
analysis studies. 

As a result, it is possible to say the following. 
Susceptibility mapping is very important to prevent 
material and moral losses that may occur due to 
disasters.

 

 
Figure 9. Landslide Susceptibility Map 
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