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 General image restoration is a challenging task in computer vision, especially for images 
with complex scenes and noise. Practical algorithms for general image restoration, such 
as Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), have been 
developed to address this problem. Real-ESRGAN is a deep learning-based image 
restoration model that uses a generative adversarial network (GAN) to produce high-
resolution images from low-resolution inputs. In recent years, Real-ESRGAN has gained 
significant attention for its impressive image restoration results on various types of 
images, including aerial images. Aerial images have unique challenges, such as high noise, 
low contrast, and blur, which affect the quality of the images. ESRGAN has been applied 
successfully to restore these images and enhance their visual quality, enabling better 
interpretation and analysis. In this article, we review the practical algorithms for general 
image restoration, with a focus on Real-ESRGAN and its application on aerial images. We 
discuss the architecture and application strategies of Real-ESRGAN, as well as its 
advantages and limitations. We also present examples of how Real-ESRGAN has been 
used in various applications, such as Segment Anything Model (SAM) and its application 
as object detection, classification, and segmentation. This study utilized the GÖKTÜRK II 
2022 Istanbul Aerial Image dataset, which comprises 917,252 image chips with a 
resolution of (512x512) and a 3-channel RGB format. In order to enhance the visual 
quality, the image chips were upscaled to a higher resolution of (1024x1024) using a 2x 
scaling factor, resulting in a fourfold increase in data size equivalent to 2.684 TB with the 
same compression ratio. This project shows the potential of Real-ESRGAN in handling 
large-scale and diverse datasets, as well as its ability to enhance the visual quality of 
aerial images for real world image restoration, which is essential in various fields such 
as agriculture, urban planning, and disaster management. 

 
 
 

1. Introduction  
 

As the use of satellite imagery grows increasingly widespread across numerous applications, research into 
spatial resolution and its impact on image quality has grown significantly. Though the spatial resolution provided 
by an optical sensor on a satellite is typically expressed as a nominal value that signifies the pixel's footprint, the 
actual resolution may differ due to various factors such as atmospheric and imaging conditions, off-nadir angle of 
the satellite, and artefacts caused by the satellite's operation or optics. Due to the high cost of enhancing the optical 
components of a sensor to obtain high-resolution (HR) images, software solutions have been sought to reduce 
expenses. To this end, several super-resolution (SR) algorithms have been created to improve spatial resolution 
and generate HR images from one or more low-resolution (LR) images. SR approaches have been applied across 
various fields such as satellite and aerial image processing [1-4], medical image processing [5], facial and 
fingerprint image enhancement [6], text image enhancement, and compressed images and video enhancement [7-
9]. This chapter serves as an introduction to the study, focusing on the advancement of spatial resolution through 
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the utilization of contemporary deep learning (DL) methods. It outlines the primary objectives of the research and 
provides concise descriptions of the subsequent chapters. Traditional approaches to enhance the spatial 
resolution of optical satellite images primarily employ pan-sharpening techniques, which involve merging 
panchromatic and multispectral (MS) images to generate high-resolution (HR) color images. Fusion techniques 
such as Principal Component Analysis (PCA) [10], Intensity Hue Saturation (IHS) [11], and Wavelet Transform [12] 
are commonly employed in this context. However, several limitations exist with regard to geometric integration 
[13], including potential color distortions, the absence of a fully automated and consistent method across diverse 
datasets, and the operator's expertise in the fusion technique. 

In the pursuit of achieving superior resolution capabilities while maintaining cost efficiency, a remarkable 
advancement has been made through the development of Super-Resolution (SR) algorithms. These algorithms 
offer the potential to enhance spatial resolution without necessitating any modifications to the sensor structure. 
By harnessing the power of SR techniques, the utilization of Low-Resolution (LR) satellite images can be 
significantly expanded across a wide array of applications. This breakthrough has paved the way for novel 
possibilities and has opened doors to exploit LR imagery in unprecedented ways. SR methods are classified into 
two broad categories: frequency domain and spatial domain approaches [14]. Though frequency domain 
approaches, such as those described in [15-17], are computationally efficient, they are insufficiently effective at 
modeling complex problems. Almost all subsequent research on SR has been conducted in the spatial domain, 
despite the high computational cost. In the spatial domain, SR approaches are classified into two categories: single 
image SR (SISR) approaches and multi-image SR (MISR) approaches [18, 19]. SISR can make assumptions about 
the HR image based on a single input image, whereas MISR displays hidden HR details. MISR requires multiple LR 
images as input for the generation of HR images, although only one LR image is typically available. As a result, the 
use of SISR methods has grown in popularity. In recent years, there has been a surge of interest in methods based 
on convolutional neural networks (CNNs) and DL. Particularly, super-resolution studies based on Generative 
Adversarial Networks (GANs), such as [20-23], have become more favorable than traditional pan-sharpening 
methods. Because GAN-based approaches have the highest accuracy and visual performance, Real-Enhanced 
Super-Resolution Generative Adversarial Network (Real-ESRGAN) were preferred to enhance the image spatial 
resolution in this study. Real-ESRGAN, an enhanced version of ESRGAN, stands out as the chosen method, 
showcasing superior accuracy and visual performance, making it a more practical solution for real-world image 
restoration. It effectively addresses issues such as the removal of bothersome compression artifacts. Though the 
ground sampling distance (GSD) in GÖKTÜRK II Istanbul satellite image was reduced from 50 cm to 25 cm, the 
number of pixels in the image was increased and the clarity of the information captured in each pixel was clarified 
with the Real-ESRGAN algorithm. This study endeavors to contribute to the advancement of satellite image 
analysis by employing artificial intelligence (AI)-based super-resolution applications, specifically focusing on 
Enhanced Super-Resolution Generative Adversarial Networks (Real-ESRGAN). The preference for Real-ESRGAN 
in this context is rooted in its capability to deliver more realistic results that align with real-world examples. Real-
ESRGAN's advanced features and training mechanisms make it particularly adept at enhancing satellite imagery 
in a manner that closely mirrors the nuances and details present in actual scenarios. By harnessing the power of 
Real-ESRGAN, this research endeavors to elevate the quality and authenticity of satellite image analysis, thereby 
addressing the demands for more accurate and lifelike representations in the field. The primary objective is to 
investigate the impact of enhanced image resolution quality and sharpness on the performance of prominent 
object detection and classification applications, with particular emphasis on the Segment Anything model. The 
overarching aim of this research is to assess whether the application of image enhancement techniques, such as 
super-resolution, can serve as a catalyst for improved object detection capabilities. In this context, the study seeks 
to determine whether these image enhancement applications could potentially play a pioneering role in bolstering 
the efficacy of object detection algorithms and if they can be integrated seamlessly as a pre-processing step in 
conventional object detection applications. 
 

2. Generative Adversarial Networks (GANs) 
 

The emulation of human cognition and creativity poses a formidable challenge for machines. Despite the 
intricacies involved in deciphering patterns from images and data, a task effortlessly performed by the human 
brain, the advent of innovative deep neural networks (DNNs) offers a promising avenue to overcome this hurdle. 
The realm of machine creativity becomes tangible through the lens of Generative Adversarial Networks (GANs). 
Originating in 2014, Ian Goodfellow introduced GANs as a distinctive class of DNNs [24]. Functioning in an 
unsupervised manner, GANs serve as neural network-based generative models, exhibiting the potential to create 
new, meaningful imagery and textual artworks. 

The GAN framework comprises two integral subsystems known as the generator and discriminator. Operating 
in stark opposition to each other, these subsystems leverage Nash equilibrium from game theory to optimize the 
overall model. The generator, often likened to a "counterfeiter," endeavors to deceive the discriminator by 
producing synthetic data. Conversely, the discriminator, akin to a "detective," strives to accurately classify 
incoming data by discerning its authenticity. This adversarial interplay between the generator and discriminator 
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forms the core dynamic of GANs, encapsulating the essence of machine creativity and pattern recognition. 
Generative models operate within the realm of unsupervised learning, eliminating the need for explicit Y output 
variables when presented with X input data. The primary objective of generative models is to discern and 
internalize patterns inherent in the input data (X). Through this process, the generative model acquires the ability 
to extrapolate and generate novel outcomes, drawing upon the learned information encoded in the patterns 
identified within the input data. The discriminative model, characterized by its reliance on supervised learning, is 
commonly associated with classification tasks. Within this framework, the primary objective is to construct 
predictive models that assign labels to each input based on available data, predicting the specific class to which 
they belong. This methodology hinges on leveraging the richness of labeled data to discern and map relationships 
between inputs and their corresponding classes, facilitating accurate predictions in the classification process. 
 

2.1. Super-Resolution Generative Adversarial Networks (SRGANs) 
 

Super-Resolution Generative Adversarial Networks (SRGANs) are a class of generative models designed to 
address the challenge of enhancing image resolution. Introduced as a groundbreaking concept, SRGANs operate 
on the basis of a generator-discriminator architecture [25]. 

A succinct overview of SRGANs reveals the following steps: Input Low-Resolution Images: Provide low-
resolution images as input to the generator. Generate Super-Resolution Images: The generator processes the input, 
producing high-resolution images as outputs. Discrimination Process: Subject the generated images to scrutiny by 
the discriminator, which evaluates their authenticity. Perceptual Enhancement: Incorporate a VGG net to introduce 
perceptual loss on a pixel-wise level, enhancing the sharpness of the generated synthetic images. 
 

2.2. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) 
 

ESRGAN thus represents a refined iteration in the evolution of super-resolution GANs (SRGANs), focusing on 
optimizing training efficiency and reducing complexity while maintaining the core principles of image super-
resolution through adversarial learning. Enhanced Super-Resolution Generative Adversarial Networks (ESRGANs) 
introduce notable advancements and optimizations to the established framework of SRGANs. The key updates in 
ESRGANs encompass improvements in both the generator and discriminator components. On the generator 
enhancements side, Removal of Batch-Normalization Layers: ESRGANs eliminate the use of batch-normalization 
(BN) layers in the generator architecture, departing from the prevalent approach in SRGANs. This strategic choice 
results in heightened performance and reduced computational complexity. Residual in Residual Dense Block: 
ESRGANs employ a Residual in Residual Dense Block, an evolution beyond the standard residual block (Figure 1). 
This unique structure allows the outputs of all layers within a block to be transmitted to subsequent layers. By 
providing the model with a multitude of features to choose from, it enhances the model's ability to discern and 
prioritize relevant information. Additionally, ESRGAN incorporates Residual Scaling to scale down the residual 
outputs, preventing potential instability.  
 

 
Figure 1. Residual in residual dense block. 

 
On the discriminator updates side, Relativistic Loss: A significant addition to the discriminator is the inclusion 

of relativistic loss. This novel loss function estimates the probability of a real image being relatively more realistic 
than a predicted fake one. By incorporating relativistic loss, the model is incentivized to continually improve its 
realism in comparison to fake images. Perceptual Loss Modification: The perceptual loss in ESRGANs undergoes a 
slight modification. Unlike SRGANs, where the loss is based on features after the activation function, ESRGANs shift 
the focus to features right before the activation function. This adjustment aims to refine the perceptual quality of 
the generated images. Comprehensive Loss Function: The total loss in ESRGANs is a composite of the GAN loss, 
perceptual loss, and the pixel-wise distance between the ground truth high-resolution images and the generated 
counterparts. This comprehensive loss function encapsulates multiple aspects, ensuring a holistic optimization 
approach during training. In summary, ESRGANs represent a refined iteration of super-resolution GANs, 
introducing architectural adjustments and loss function enhancements to elevate both performance and image 
quality. 
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2.3. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) 
 

Real-ESRGAN, an enhanced version of ESRGAN, represents a more practical solution for real-world image 
restoration by effectively addressing issues such as the removal of bothersome compression artifacts. 
 

 

3. Material and Method 
 

The GÖKTÜRK II satellite had been supplied by General Directorate of Mapping, consisted of 18 parts, whereas 
the Pleiades satellite consisted of 4 parts, making up a total of 22 sheets with each image approximately ~50 GB 
in size. The sheet images were initially received as Raw 2 images, and it was found that the metadata information 
was not preserved after processing with the Real-ESRGAN algorithm. The images were re-obtained after being 
orthorectified. To make the application effective on the image, it was started with a single computer. The Real-
ESRGAN algorithm was optimized to work on the CPU. Processing the chip images with the CPU took 
approximately 14 seconds per chip, which delayed the project timeline. To improve application performance, the 
algorithm was optimized to use GPU tensors in PyTorch. PyTorch 1.12.1 GPU, CUDA 11.6, CUDNN 8.0 versions 
were used in this study. The processing power per chip was reduced from 14 seconds to 5 seconds. The algorithm 
files processed all the chip images individually from a single file. A multi-folder system was used, and thread 
optimization was used to process files in parallel. The processing performance per chip was reduced from 5 
seconds to between 1 and 1.7 seconds, depending on the computer's GPU processing power, after optimization 
using GPU tensors. Despite using a high-performance GeForce GTX 3060 graphics card on a single computer, it was 
found that the application's chip processing productivity was not sufficient. To process all the chips in parallel 
form with similar and equal parts, 5 server computers were used. To be able to process in parallel, the distribution 
of files was linearly proportional to the computer's GPU processing power, shared through local sharing folders. 
Sharing ratios of 24%, 23%, 23%, 15%, and 15% were respectively used for 1 NVIDIA RTX 4000, 2 GeForce GTX 
3060, and 2 mobile 1080 graphics card computers, according to the computer's power. After the chip images 
obtained from each map section were transferred to the shared folders at the mentioned ratios, the transfer of 
chip images from these shared folders to the local data areas of the server computer was ensured. Since processing 
each data one by one took too much time for a large number of chip images, monitoring the time was an important 
step, and time measurement mechanisms were created to show the processing capacity of the current files. 

The processing of chip images involves three main stages, along with a complementary step (Figure 2), 
following the selection of an appropriate Real-ESRGAN model. These stages consist of pre-processing, where color 
space transformations are performed; main processing, where chip shape transformations are applied; and post-
processing, where last touch transformations are carried out. In addition, complementary transformations are 
applied, including raster to mosaic transformation and symbology equalization. This study describes the 
methodology used to process chip images and explains the rationale behind each stage and complementary step. 
 

 
Figure 2. Experimental procedures. 



Advanced Remote Sensing, 2023, 3(2), 90-99 
 

94 
 

3.1. The Experimental Procedures 
 

In this study, a super-resolution model was investigated to achieve optimal image clarity by applying three 
models trained with disparate features to GÖKTÜRK II raw satellite image chip data sample (Figure 3). The models 
included RealESRGAN_x2plus (Figure 4), RealESRGAN_x4plus_netD Result (Figure 5), and RealESRNet_x4plus 
(Figure 6).  

The impact of each model on the raw images was examined to determine the most effective in minimizing 
departure from realistic image flow, a handicap of image enhancement. RealESRGAN_x4plus (Figure 6) was found 
to be the model that deviated the least from realistic image flow and was therefore selected for the image 
enhancement process. 
 

  
Figure 3. Raw Data Sample. Figure 4. RealESRGAN_x2plus Result. 

  
Figure 5. RealESRGAN_x4plus_netD Result. Figure 6. RealESRGAN_x4plus Result. 

 
3.1.1. Pre-Processing (Color Space Transformation) 
 

The satellite images had been supplied by General Directorate of Mapping, including GÖKTÜRK II and Pleiades, 
were compressed in the .pix format. The image tiles were converted from the PIX format to the TIFF format. The 
raw images were provided in the BGR color space, and the image tiles with the BGRA color space were transformed 
into the RGBA color space.  

Since the trained models were created from 3D images, the transparency information for the image tiles was 
removed, and the images were reduced from four dimensions to three dimensions. As the raw images had a depth 
of 16 bits, each band was reduced from 16 bits to 8 bits to enable examination of the resulting images. 
 
3.1.2. Chip Scale Transformation 
 

Each image tile was converted into 512x512 resolution image chips using the Export Data for Deep Learning 
geoprocessing tool in ArcGIS Pro, with a cell size reduction from 50 cm to 25 cm. During this process, a total of 
917,252 tiles were obtained from the Istanbul Satellite 2022 image. The coordinate information for each chip 
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image was stored in .tfw files. Each chip image was then subjected to x2 scale Natural Color Emplacement using 
the RealESRGAN_x4plus model and scaled to 1024x1024 dimensions with minimal loss. 

To improve the effectiveness of the Real-ESRGAN model on the image, anti-aliasing technique was applied to 
the raw chip image. Anti-aliasing is a technique used in computer graphics to reduce the visual artifacts that can 
appear on images or text displayed on a screen. It works by smoothing out the jagged edges of diagonal or curved 
lines, making them appear smoother and more natural to the eye. 
 
3.1.3. Post-Processing (Last Touch Transformation) 
 

The noise in the chip images generated with the RealESRGAN_x4plus model at 1024x1024 resolution was 
minimized. As a result, morphological sharpening algorithms could be applied to the image without noise content. 
A sharpening kernel with a depth of (5, 5) from the OpenCV library was applied to the improved chip images as a 
post-processing method. Pastel-colored state of the image could occur though improving the image in Real-
ESRGAN applications. To prevent this from being transferred to the image as much as possible, the image made 
the image expression in the edge regions of the satellite image more pronounced. Applying morphological 
sharpening algorithms to the scaled image ensures that the details stand out more smoothly. To be able to properly 
integrate the sharpened 1024x1024 chip images into the mosaic process, they were scaled back to 512x512 in the 
plane where their coordinates were stored. The model did not support .tiff format files. Therefore, the resulting 
.png files were converted back to the tiff format to prevent information loss in the pyramid image. 

The chip images that were enhanced with the Real-ESRGAN model and morphologically sharpened were scaled 
back down to a resolution of 512x512 to ensure proper stitching during the mosaic process. Then, using the ArcGIS 
Pro "Mosaic to New Raster Geoprocessing Tool" with the Cubic resampling method, the chip images were 
mosaicked. The mosaic operator was set to "Last" chip tile and the mosaic colormap mode was set to "First" chip 
tile to create the mosaic image. The symbology and stretch type information obtained from the raw imagery were 
stored in .xml format for each tile image, and then applied to the enhanced mosaic image with statistical 
information. A Gamma correction value of 0.7 was stored as the stretch type, while a Clip Percentage Mapping 
value of 0.250 was assigned for each band. 
 

 
Figure 7. A) 2022 Istanbul Aerial Raw Data, B) Real-ESRGAN-Enhanced Data, C) Raw Data Zoomed-In Part, D) 

Real-ESRGAN-Enhanced Data Zoomed-In Part. 
 

4. Results 
 

In this study, we aimed to investigate the impact of super resolution applied raster data versus raw data on the 
performance of an object detection model, specifically the Segment Anything Model (SAM). The Segment Anything 
Model (SAM) is an object detection model that is based on a state-of-the-art computer vision algorithm known as 
Mask R-CNN (Region-based Convolutional Neural Network) which combines the object detection and image 
segmentation capabilities [26]. In this study, we used segment-geospatial, an improved spatial data segmentation 
tool that uses a segment anything model infrastructure. Segment-Geospatial is a powerful tool for geospatial data 
segmentation and classification, providing researchers and academics with a flexible and efficient framework for 
their geospatial analysis needs [27]. By leveraging the library's functionalities, users can gain valuable insights 
into their geospatial datasets and extract meaningful information for various academic applications. We compared 
the performance of SAM on two sets of data, one processed with super resolution and the other without any 
preprocessing, in terms of accuracy and efficiency. The object of interest in this study was rooftop detection, as it 
is a critical task for urban planning and management. SAM is designed to detect and segment multiple objects of 
different classes within an image. It can identify objects in complex scenes, even when they are partially obscured 
or occluded by other objects. SAM can be trained on various datasets to detect different types of objects such as 
vehicles, pedestrians, and buildings. The main advantage of SAM over traditional object detection models is its 
ability to produce pixel-level object masks. This makes it highly accurate in localizing the objects of interest and 
enables it to identify the boundaries of each object in the image. Additionally, SAM can be used to perform instance 
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segmentation, which is a more advanced form of object detection that assigns a unique label to each instance of an 
object in an image. 
 

 
Figure 8. E) Original Sample, F) Ground-Truth Data, G) Raw Data SAM Model Output, H) ESRGAN-Enhanced Data 

SAM Model Output. 
 

Table 1. Comparison of proposed method. 
Sam Model TP FP FN Precision Recall F1-Score IoU 

Applied on Raw Data 197 7 5 0.965 0.975 0.970 ≈ 0.942 

Applied on Real-ESRGAN-Enhanced Data 207 24 2 0.896 0.991 0.941 ≈ 0.888 

 
The study aimed to evaluate the performance of autonomous SAM detection models in identifying rooftop 

vector polygons. The ground truth data consisted of 209 polygons, and SAM identified 197 of these correctly, with 
7 false positive detections and 5 false negatives on Raw Istanbul Aerial Data. Moreover, SAM identified 207 of these 
correctly, with 24 false positive detections and 2 false negatives on Real-ESRGAN Applied Istanbul Aerial Data 
(Table 1) (Figure 8). 

These results suggest that though both models were able to identify the majority of rooftops accurately (Figure 
8), SAM results on Real-ESRGAN applied data had a higher false positive rate, which could result in additional 
resources being expended in verifying the accuracy of detected rooftops. Conversely, SAM results on raw data had 
a lower false positive rate, but also missed a significant number of rooftops, resulting in higher false negatives. 
Based on the findings presented, it is difficult to conclude that Real-ESRGAN-enhanced data provides better results 
than raw data. Though the Real-ESRGAN-enhanced data segmentation model achieved a higher Recall score than 
the raw data segmentation model, it also had a lower Precision score and a higher number of false positive 
predictions. The choice of which data to use ultimately depends on the specific application and the trade-offs 
between Precision and Recall that are acceptable for that application. If minimizing false positives is critical, the 
raw data segmentation model may be preferred. On the other hand, if identifying as many true positives as possible 
is the priority, the Real-ESRGAN-enhanced data segmentation model may be more suitable. 

 
 

5. Discussion  
 

Digitization of various types of physical records and materials has become increasingly important in recent 
years, as organizations seek to leverage digital technologies for better management, access, and analysis of their 
data. However, manual digitization can be a time-consuming and costly process, especially for large datasets. One 
potential solution to this challenge is to use machine learning techniques to automate the digitization process, 
reducing the need for manual intervention and thereby reducing costs. One area where machine learning can be 
particularly effective is in enhancing the quality of digital images. In recent years, deep learning-based image 
super-resolution methods, such as Real-ESRGAN, have shown great promise in improving the quality of low-
resolution images [28].  Real-ESRGAN, in particular, is a state-of-the-art deep learning model that can produce 
high-resolution images with realistic textures and details (Figure 9). Unlike the traditional SRGAN algorithm, it 
allows for more realistic results closer to reality in an image enhancement project [29]. By using Real-ESRGAN to 
enhance low-resolution images, organizations can potentially reduce the cost and time required for manual 
digitization. For example, in the case of historical documents or photographs with low resolution, Real-ESRGAN 
can be used to create high-quality digital copies that are easier to read and analyze (Figure 7) (Figure 9). This can 
make the digitization process more efficient, especially when large volumes of data need to be processed. 

In addition to reducing costs and improving efficiency, Real-ESRGAN can also have a significant impact on the 
performance of segmentation models, such as SAM models. Segmentation models rely on accurate and detailed 
images to accurately identify and classify objects of interest. By enhancing low-resolution images with Real-
ESRGAN, segmentation models can be trained on higher-quality data, which can improve their accuracy and reduce 
false positives. 

 
 



Advanced Remote Sensing, 2023, 3(2), 90-99 
 

97 
 

  
(I) (J) 

Figure 9. I) 2022 Istanbul Pansharpened Aerial Data Sample, J) 2022 Real-ESRGAN Applied on Pansharpened 
Istanbul Data Sample. 

 
 

6. Conclusion  
 

In this study, the focus was on increasing the spatial resolution of satellite images through the use of Real-
ESRGAN. The results showed that the application of Real-ESRGAN in digitization and segmentation workflows can 
lead to significant benefits in terms of cost reduction, increased efficiency, and improved accuracy. By using Real-
ESRGAN to enhance low-resolution images, organizations can potentially streamline the manual digitization 
process and reduce costs. Furthermore, the use of Real-ESRGAN can eliminate the need for expensive high-
resolution aerial images and reduce reliance on human intervention. However, it is important to note that the 
quality of the output images produced by Real-ESRGAN can vary based on several factors, and careful 
consideration and testing are necessary before implementing Real-ESRGAN in a workflow. Overall, Real-ESRGAN 
represents a powerful tool for machine learning-based image super-resolution techniques, with the potential to 
transform the way organizations manage and analyze their data. 
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