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 The growth and expansion of urban regions in various cities worldwide, especially in 
developing economies, leads to changes in land usage. Thus, the study assessed the 
changes in land use and land cover within Kigali City using the Land Change Modeler of 
the TerrSet software system. The study focused on 2010 to 2020, using classified 
GlobeLand30 maps to identify significant land cover transitions, which were then 
classified into submodels. An enhanced multi-layer perceptron neural network was also 
used to analyze these transitions. Urban expansion was predicted using five key 
variables: elevation, slope, distance from rivers, roads, and built-up areas. The multi-
layer perceptron neural network achieved an accuracy of 81.90% in predicting land use 
and land cover changes. The Cellular Automata-Markov chain model in the Land Change 
Modeler was implemented to forecast land use and land cover patterns for 2030. Results 
indicated that (1) over the past decade (2010-2020), urban areas expanded by 20.89 
km², while forests, grasslands, shrublands, and wetlands decreased by 1.31 km², 8.63 
km², 0.15 km², and 0.05 km², respectively. The study also predicts that (2) from 2020 to 
2030, urban areas and artificial surfaces will expand by 15.83%, with a considerable 
decrease in grassland and cultivated land. The study further predicts a slight decrease in 
wetland areas and for land use and land cover in Kigali City, highlighting the expansion 
of urban areas and their potential impact on other land uses. It serves as a critical tool to 
support sustainable urban planning and policies aimed at ensuring the long-term 
ecological and environmental sustainability of Kigali City. 

 
 
 

1. Introduction  
 

Cities worldwide are experiencing rapid population growth, a significant factor driving changes in land use and 
land cover (LULC) [1]. The alteration of LULC poses a critical environmental challenge worldwide [2]. The 
urbanization phenomenon is driven by socioeconomic and political developments, leading to large cities' 
expansion and LULC transformations [3,4]. Urban sprawl is a global occurrence that attracts the attention of urban 
planners due to its impact on the environmental efficiency of cities [5]. It is "a land-use pattern in urban areas 
characterized by low density, continuity, concentration, clustering, centrality, nuclearity, mixed-use, and 
proximity" [6]. The impacts of urban development on the structure and function of urban ecosystems are 
multifaceted [7]. Urbanization creates both opportunities and challenges for human life. According to some urban 
planners, urban sprawl improves the quality of life and supports economic growth. However, high human activity 
in cities adds to LULC changes, which negatively affect affected urban areas [8]. The worldwide urban population 
has grown unparalleled since the mid-twentieth century. In 1950, 30% of the world's population lived in cities; by 
2050, this proportion is expected to rise to 66% [9]. The ongoing phenomenon of urbanization requires land 
conversion to make way for new urban constructions. According to estimates, over 5.87 million square kilometers 
of land are expected to be turned into urban areas globally by 2030 [10]. Thus, monitoring spatial and temporal 
patterns of urban expansion is critical to ensuring well-managed urban development. Such monitoring activities 
are efficient with satellite data. The combination of remote sensing (RS) and geographic information systems (GIS) 
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has proven to be the most effective tool for controlling LULC change and natural resource research. Scientists, 
ecologists, farmers, lawmakers, and urban planners benefit from analyzing and tracking regional and temporal 
fluctuations in LULC [11].  

RS and GIS techniques contribute to the efficient management of natural resources by facilitating land 
preparation and long-term tracking of change dynamics [12]. Several spatio-temporal prediction models, such as 
the Markov chain (MC) model, cellular automata (CA) model, and conversion of LULC and its effects (CLUE) model, 
have been created in recent years to forecast LULC changes and detect their impacts [13,14]. Future LULC changes 
can be predicted by combining LULC models with RS and GIS data. Different studies on LULC detection and 
prediction have been conducted using LULC models with RS and GIS [15], conducted a classification analysis of 
LULC change detection with temporal Landsat images in the seven-county Twin Cities Metropolitan Area, 
Minnesota. Another study [16] used a hybrid classification and post-classification approach using Land-sat images 
to assess land cover change in Samsun, Türkiye, between 1980 and 1999 [17] used Landsat data for intermediate 
change detection analysis in residential areas between 1975 and 2001 to study urban expansion in Isfahan, Iran, 
from 1956 to 2006. In the case of East Africa, some studies have been done as well, such as the use of multi-sensor 
satellite data for LULC monitoring in Nakuru, Kenya, by [18], and [19], analyzed urban expansion and LULC in the 
Post-Genocide Period in Kigali City, Rwanda. Furthermore, [20] used multitemporal Landsat data and landscape 
metrics to study the spatiotemporal analysis of urban land cover changes in Kigali, Rwanda.  

Despite numerous studies on understanding urban growth and LULC change in Kigali City over the years, none 
of these studies have utilized the GlobeLand30 data. This global dataset proves valuable for Rwanda. Effective 
modeling of urban LULC changes in Kigali requires robust methods capable of capturing the urban environment's 
growth, complexity, and dynamic aspects. Thus, this study aims to assess LULC changes from 2010 to 2020 and 
forecast urban growth using the GlobeLand30 dataset and modeling tools such as Cellular Automata. Furthermore, 
analyzing LULC changes and predicting future urban growth can significantly contribute to the decision-making 
process regarding LULC and the sustainable development of Kigali City.  
 

2. Material and Method 
 

2.1. Study Area 
 

Our study area (Kigali City) is in the Central-East African area of Rwanda and serves as the country's capital 
and largest city (Figure 1). The province of Kigali is the most urbanized in Rwanda, with 86.9% of its population 
living in urban areas. Covering an area of 730 km2, Kigali serves as a vital business center and main port of entry 
with a current population of 1,745,555, according to the Fifth Rwanda Population and Housing Census, 2022 [21]. 
The city comprises the districts of Nyarugenge, Gasabo, and Kicukiro. [20]. The land cover in the study area 
includes constructed areas with diverse urban functions, green spaces consisting of forests, open vegetated lands, 
agriculture, and wetlands [7]. Additionally, scattered bare lands, under construction or uncovered soil, and water 
bodies such as fishponds, streams, and part of Lake Muhazi in the extreme north are significant land cover classes. 
Kigali's historical development dates to its establishment as Germany's colonial administrative outpost in 1907, 
expanding over time to become a metropolitan area [22]. With a 4.1% annual urban growth rate, Kigali remains a 
vital hub for Rwanda's secondary and tertiary activities [23]. However, accelerated urbanization has resulted in 
the uncontrolled growth of informal settlements and environmental degradation. The study aims to predict land-
use change paths in Kigali to inform sustainable urban dynamics and land-use management decision-making. 
 

2.2. Data  
 

The study utilized a variety of data sources, including remotely sensed and geospatial data (Table 1). These 
included LULC data obtained from GlobeLand30, administrative boundaries obtained from an updated source, 
SRTM 1 DEM, and additional data related to roads, rivers, and built-up areas received from the Centre for GIS and 
Remote Sensing (CGIS) at the University of Rwanda. The GlobeLand30 dataset, developed by the National 
Geomatics Centre of China, offers high-resolution imagery covering the period from 2000 to 2010 [24]. It is created 
using more than 10,000 Landsat satellite images and a "pixel-object-knowledge" method. For this study, 
GlobeLand30 data for 2000, 2010, and 2020 were obtained from [25]. The dataset classifies land cover into ten 
types: cultivated land, forest, grassland, shrubland, wetland, water bodies, tundra, artificial surfaces, bare land, 
and permanent snow and ice [26]. However, only seven of these land cover types are applicable in Rwanda. These 
seven land cover types are Cultivated land, Forest, Grassland, Shrubland, Wetland, Water bodies, and Artificial 
surfaces. The accuracy of GlobeLand30 has been evaluated and confirmed by Arowolo and Deng [27]. An overall 
accuracy of 79.6%, 83.5%, and 85.69% were respectively reported in 2000, 2010, and 2020. Kappa coefficient was 
0.81 in 2000 and 0.78 in 2010 [28]. Their findings suggest that GlobeLand30 is suitable for data analysis in 
developing countries like Rwanda. 
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Figure 1. Kigali city location map. 

 
Table 1. Remote sensed and geospatial data. 

Data Type Dataset Resolution Source 
LULC GlobeLand30 30 m National Geomatics Centre of China. 

http://www.globallandcover.com 
Administrative 

boundary 
Vector data - Updated administrative boundary obtained from the link: 

https://www.diva-gis.org/gdata 

 

 
Figure 2. LULC classified maps. 



Advanced Remote Sensing, 2024, 4(1), 46-57 
 

49 

 
Figure 3. Variables used in the study: (a) built-up area; (b)Distance from rivers; (c) Distance from roads; (d) 

Elevation; (e) Slope. 
 

2.3. Data processing 
 

The LULC classified maps for the study area in the years 2000 and 2010 are depicted in Figure 2. These maps 
were generated using Esri software (ArcGIS 10.8), facilitating the analysis of the GlobeLand30 data. The reference 
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system used for the maps was the Universal Transverse Mercator (UTM) projection in zone 31 North, and the 
World Geodetic System (WGS) 1984 was utilized with a spatial resolution of 30 meters. Also, the TerrSet software 
system's LCM module was used to make a prediction map. Furthermore, significant land cover transitions were 
carefully selected and categorized into submodels in this study. Each transition was then analyzed using an 
enhanced multilayer perceptron (MLP) neural network [29]. This study considered five factors (Elevation, slope, 
distance from rivers, roads, and Built-up area) (Figure 3) that were chosen and assessed based on their impact on 
urban expansion. Among these factors were static variables such as height, slope, and distance from water bodies 
and dynamic variables, including distance from major roadways and existing artificial surfaces. It is important to 
note that dynamic variables can be modified and recalculated during the prediction process, while static variables 
remain unchanged over time [3,29]. The sub-modeling in this study focused on two main variables: critical LULC 
transitions and driving forces. 

In Figure 3, the units used for measurement are as follows: kilometers (km) for distance from roads and built-
up areas, meters (m) for distance from rivers and elevation, and percentages (%) for slope. According to [30], 
topography and high population pressure significantly contributed to LULC variations in the study conducted in 
Rwanda. Our research used data on elevation (DEM) and slope to analyze the impact of topographical factors. In 
addition, we incorporated data on built-up area density as an indicator of high population density. In addition, we 
considered other urban drivers, predominantly human disturbance factors, such as distance to roads [31–33] and 
distance to aquatic bodies [34,35], which are essential urban expansion determinants. Roads were selected 
explicitly as, since 2000, the construction and enhancement of economic infrastructures such as roads have been 
constructed to attract investors and stimulate economic growth and as the top priority in urban planning 
regarding socioeconomic factors [19]. 
 

2.4. Transitional modeling and accuracy 
 

During this phase, it is essential to identify significant LULC transitions and develop transition potential maps 
with sufficient precision for the transition models. These transition maps are generated by incorporating LULC 
transitions and static and dynamic variables into an MLP neural network, a prevalent type of artificial neural 
network. The MLP neural network uses a supervised "backpropagation" training algorithm to modify model 
parameters and reduce errors, enhancing accuracy. For an accurate LULC classification, a success rate from 79% 
is considered acceptable [36]. After conducting 10,000 iterations, the MLP achieved an accuracy of 81.90% in 
detecting LULC changes between 2010 and 2020. The resulting transition potential maps were then utilized to 
predict LULC changes. Furthermore, the assessment of the reliability of the LULC classification was obtained by 
the Equation 1: 
 

𝐺𝐴 =  100
∑ 𝑃𝑖𝑖𝑚

𝑖=1

𝑛
 (1) 

 
The CA-Markov model LULC utilizes Equation (1) to determine the overall accuracy of a land use map generated 

by the model. This equation calculates the sum of the conditional accuracy of each land use type, divided by the 
total number of cells in the map [37]. 
 

2.5. Predicting future LULC changes 
 

This study applied the CA-Markov chain model implemented in the Land Change Modeler (LCM) module of 
TerrSet software version 18.3 to forecast future LULC patterns of Kigali city using GlobeLand30 maps from 2010 
and 2020. A CA model consists of interconnected cells capable of simulating the spatiotemporal properties of 
complex systems. CA assumes that the present LULC condition and changes in neighboring cells determine the 
LULC change for a specific location [38]. Markov chains are commonly used to represent LULC changes, as they 
capture the probabilities of transition between two-time intervals based on historical trends. The transition 
probability matrix derived from Markov chain analysis offers insight into upcoming LULC adjustments. In this 
study, the MLP neural network played a crucial role in determining the transition weights for incorporation into 
the probability matrices of the Markov chain, allowing for the prediction of future LULC changes. The resulting 
matrix quantifies the anticipated change quantity for each weighted transition until the anticipated end dates. The 
transition probability matrix for LULC variations between 2010 and 2020 was quantified in detail. Using the CA 
Markov chain approach, a prediction for 2030 was conducted, leading to the identification of prospective LULC 
alterations.  
 

3. Results  
 

3.1. Land use land cover proportions 
 
Table 2 shows the distribution of LULC in the study area between 2010 and 2020. It displays the areas in km2 

and the changes in each LULC category. In 2010, the category with the largest LULC area was Cultivated Land, 
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which covered 367.53 km2 and accounted for 51.28 % of the total area. The area covered by Forest was 56.32 km2 
(7.86%), while Grassland was 213.08 km2 (29.73%). Other categories, including Shrubland, Wetland, Waterbodies, 
and Artificial surfaces/Urban areas, had lesser areas ranging from 1.30 km2 to 70.48 km2, comprising less than 
10% of the total area. There were minor variations in the distribution of LULC categories from 2010 to 2020. The 
cultivated land area decreased to 355.90 km2 (49.66%), while forest and grassland areas also reduced marginally. 
Artificial surfaces/Urban areas, on the other hand, increased substantially by 91.37 km2 (12.75%), indicating 
urbanization or increased development. The regions of Shrubland, Wetland, and Waterbodies remained relatively 
stable or underwent minor alterations. The table provides an overview of the composition and evolution of LULC 
over a decade. It emphasizes trends in various land cover categories, including the growth of urban areas and their 
prospective impact on other LULC classes. 

 
Table 2. Land use Change statistics of 2010 and 2020. 

Year 2010 2020 
LULC Area (km2) Area (%) Area(km2) Area (%) 

Cultivated Land 367.53 51.28 355.90 49.66 
Forest 56.32 7.86 55.01 7.68 

Grassland 213.08 29.73 204.45 28.53 
Shrubland 1.30 0.18 1.15 0.16 
Wetland 5.74 0.80 5.79 0.81 

Waterbodies 2.23 0.31 3.02 0.42 
Artificial surfaces 70.48 9.83 91.37 12.75 

Total 716.69 100 716.69 100 

 
3.2. Land use change model analysis for LULC 
 

The results from Table 3 indicate that between 2010 and 2020, 25,22 km2 of agricultural land was lost, 
signifying a decline in agricultural areas. In addition, there were gains of 13,58 km2, but the net consequence was 
a decrease of 11,63 km2 in cultivated land. The forests lost 16.39 km2 and gained 15.08 km2, resulting in a small 
net reduction of 1.31 km2. Grasslands lost 33.30 km2 and gained 24.67 km2 over the past decade, resulting in a net 
change of -8.63 km2. Losses of 0.88 km2 and gains of 0.73 km2 resulted in a net change of -0.15 km2 for shrublands. 
The wetland area decreased by 0.20 km2 and increased by 0.25 km2 for a net change of 0.05 km2. The area of 
waterbodies decreased by 0.30 km2 and increased by 1.10 km2, resulting in a net change of 0.79 km2. The net 
increase indicates an overall expansion of water bodies during the period. The category with the most significant 
growth was "Artificial surfaces/Urban areas," which grew by 23,69 km2 over the decade. Significant urbanization 
and expansion of developed areas led to a net change of 20,89 km2 for this category. 
 

Table 3. Land use and land cover statistics from 2010 to 2020. 
Year 2010-2020 
LULC Loss (km2) Gains (km2) Net change (km2) 

Cultivated Land 25.22 13.58 -11.63 
Forest 16.39 15.08 -1.31 

Grassland 33.30 24.67 -8.63 
Shrubland 0.88 0.73 -0.15 
Wetland 0.20 0.25 0.05 

Waterbodies 0.30 1.10 0.79 
Artificial surfaces 2.80 23.69 20.89 

 
The category of Artificial surfaces/Urban areas with the most significant increase is depicted in Figure 4 as 

undergoing a substantial change. During the decade, it experienced a considerable increase of 23,69 km2, resulting 
in a net change of 20,89 km2. The category suffering the most significant loss is "Cultivated Land." Its area 
decreased by 25.22 km2 over the past decade, resulting in a net change of -11.63 km2. The loss of farmland was 
primarily caused by the urban expansion phenomenon between 2010 and 2010. 
 
3.3. Markov chain transition matrix analysis 
 

Using Markov chain analysis, Table 4 computes a transition probability matrix between 2010 and 2020, with a 
projection for 2030. The matrix comprises rows and columns representing various LULC classes. The diagonal 
values represent the likelihood that each LULC class will remain constant over time [39]. The outcomes disclose 
the probabilities of future transitions from diverse LULC classes to artificial surfaces. The probability of cultivated 
land becoming artificial surfaces is 3.54 %, while the probability of forest land becoming artificial surfaces is 1.05 
%. In addition, the probabilities of grassland, shrubland, wetland, water bodies, and barren land becoming artificial 
surfaces are 4.62%, 17.54%, 0.00%, and 0.08%, respectively. These results suggest that shrubland, grassland, and 
cultivated land are more likely to be converted to artificial surfaces, indicating a potential conversion of vegetation 
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into urban areas in the Kigali city area. In contrast, the study area's forest, water bodies, and wetland entities have 
a lower probability of transforming into artificial surfaces. 

 
Table 4. Transition probability matrix for the period between 2010 and 2020. 

LULC Class Cultivated Land Forest Grassland Shrubland Wetland Waterbodies Artificial 
surfaces 

Cultivated Land 0.9314 0.0062 0.0263 0.0001 0.0002 0.0003 0.0354 
Forest 0.0434 0.709 0.2222 0.0044 0.0006 0.01 0.0105 
Grassland 0.0482 0.0576 0.8437 0.0018 0.0006 0.0018 0.0462 
Shrubland 0.0304 0.192 0.2486 0.3239 0.000 0.0297 0.1754 
Wetland 0.0121 0.0116 0.0116 0.000 0.9646 0.0002 0.000 
Waterbodies 0.0137 0.0444 0.065 0.0061 0.0052 0.8648 0.0008 
Artificial surfaces 0.0102 0.0017 0.0275 0.0004 0.000 0.000 0.9602 

 
 

3.4. Land use land cover prediction 2030 
 

The corresponding area statistics and predicted extent of the various LULC classes for 2030 are presented in 
Table 5. In 2030, cultivated land is anticipated to comprise approximately 48.04 % of the total land area. This 
suggests that a substantial fraction of the city's land will continue to be used for agriculture. The projected forest 
area for the same year is approximately 7.63 % of the total land area, ensuring the preservation of significant 
forested areas within the metropolitan area, essential for maintaining biodiversity and ecological balance. The 
projected area of grassland is approximately 194,96 square kilometers, or approximately 27.25 % of the total land 
area. This indicates that Kigali City has an abundance of natural grasslands and open areas. The predicted wetland 
area in 2030 is 5,79 square kilometers, or approximately 0.81 % of the total land area. This is consistent with the 
government's efforts to relocate activities from wetland ecosystems, rehabilitate them, and preserve these 
ecosystems due to their vital role in maintaining biodiversity and water quality. Lakes, rivers, and reservoirs are 
anticipated to cover approximately 0.42 % of the total land area. These volumes of water play a vital role in urban 
water supply and serve as recreational areas. The predicted area of artificial surfaces, including urban and built-
up areas, is approximately 113.43 square kilometers, or 15.85 % of the total land area. This demonstrates the 
development of urbanization and infrastructure in Kigali. 
 

Table 5. 2030 predicted LULC area statistics. 
LULC Classes Area (km2) Area (%) 

Cultivated Land 343.78 48.04 
Forest 54.57 7.63 

Grassland 194.96 27.25 
Wetland 5.79 0.81 

Waterbodies 3.02 0.42 
Artificial surfaces 113.43 15.85 

Total area 715.54 100 

 
In Kigali, the area designated as Artificial surfaces/Urban areas is projected to cover 113.43 square kilometers 

(15.85% of the total area) by 2030. This indicates a significant expansion of urban development in the city. Based 
on the research done by [3] in Lagos, the area designated as Artificial Surfaces is predicted to cover a much larger 
extent of 867.90 square kilometers (19.19% of the total area) by 2030. Kigali and Lagos are experiencing 
significant urban expansion, with the area of artificial surfaces/urban areas increasing in both cities. However, 
Lagos has a more considerable extent of urban expansion than Kigali. The expansion of artificial surfaces/urban 
areas in both cities signifies the challenges and opportunities associated with urban development, including the 
need for sustainable planning, infrastructure, and environmental conservation. 
 
4. Discussion 
 

4.1. Artificial surface expansion in Kigali City 
 

Kigali has experienced a significant increase in artificial surfaces, especially in urban areas, due to population 
development and the repatriation of Rwandan refugees from nearby nations [7]. On the other hand, Kigali is a city 
that is rapidly modernizing and emphasizes sustainability, cleanliness, and creative urban planning [40]. However, 
Kigali has seen significant deforestation because of the influx of refugees [3]. Thus, managing urban growth while 
maintaining natural habitats and open areas wasn't easy. The susceptibility of their wetlands is another issue that 
Kigali has faced, while Kigali's wetlands have slightly changed during the study. Kigali's approach to urban 
development is unique due to its focus on sustainability and cleanliness [41]. The city has made significant 
progress in implementing eco-friendly policies, such as prohibiting plastic bags and encouraging green spaces [42]. 
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Finally, Kigali represents its own set of difficulties and possibilities. While artificial surface growth has occurred, 
the patterns of land cover changes, particularly regarding vegetation and wetlands, have been distinct. Figure 5 
shows a net increase in the area covered by artificial surfaces in Kigali. This indicates that the city has witnessed 
urbanization and the growth of built-up regions over this time. In addition, Kigali expanded outward in all 
directions, as seen by the rising MSI (Modified Sprawl Index) value [41,44]. Issuing horizontal building licenses, 
which made it easier for the city's built-up regions to expand, is to blame for the sprawl. Rural land on the 
periphery of current artificial surfaces has been developed to meet the growing demand for urban space. The 
demand for urban growth and the requirement to accommodate the expanding population and economic activity 
in these cities are reflected in the conversion of rural land to urban usage. While Kigali has seen the growth of 
artificial surfaces, it is vital to note that there might be variations in the scope, speed, and particular causes of these 
changes. Various variables, including population increase, economic development, urban planning regulations, 
and governance procedures, can influence each pattern of urban growth. Urban planners may control urban 
growth, protect natural ecosystems, and apply sustainable urban planning practices to secure a better future for 
its citizens and the environment.  

 

 
Figure 4. Maps showing: (a) LULC 2020, (b)predicted LULC 2030, and (c) Predicted urban expansion 2020-2030. 
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4.2. The future of Kigali City 
 

According to the LULC change projection for Kigali City, there is a significant expected increase in artificial 
surfaces and urban areas. In contrast, cultivated land, forest, and grassland are expected to decrease. This trend is 
typical in rapidly developing cities worldwide. The projection shows a decrease of 12.12 km2 in cultivated land, 
0.44 km2 in forest cover, and 9.49 km2 in grassland cover. However, wetland and waterbody coverage are projected 
to remain stable over the same period. An increase of 22.06 km2 in artificial surfaces is expected between 2020 
and 2030. 

 
Table 6. LULC changes between 2020 and 2030. 

LULC Classes Area (km2) 
2030 2020 Change 

Cultivated Land 343.78 355.9 -12.12 
Forest 54.57 55.01 -0.44 

Grassland 194.96 204.45 -9.49 
Wetland 5.79 5.79 0 

Waterbodies 3.02 3.02 0 
Artificial surfaces/Urban areas 113.43 91.37 22.06 

 
This change represents a 1.69% reduction in Cultivated Land over the past ten years. Similarly, the Forest area 

is projected to decrease from 55.01 km2 (7.68%) in 2020 to 54.57 km2 (7.61%) in 2030, resulting in a net change 
of -0.07%. The Grassland area is anticipated to decrease from 204.45 km2 (28.53%) to 194.96 km2 (27.20%), 
resulting in a net change of -1.33%. [19,43] observed this trend over the past decade and reported that the rapid 
expansion of urban areas has put pressure on the natural environment, decreasing forest and open land areas. 
However, the Shrubland, Wetland, and Waterbodies categories are expected to remain unchanged over the next 
ten years and maintain their present proportions and territories. This prediction is primarily due to the initiatives 
the City of Kigali implemented to promote sustainable development [45]. These initiatives include the Sustainable 
Development Goals (SDGs) [46], 7 Years Government Programme National Strategy for Transformation [47], the 
City of Kigali Development Plan (CKDP), and the Kigali City Master Plan. Moreover, the city of Kigali has eradicated 
all infrastructures, facilities, and illicit activities from the wetland areas of Kigali [48]. On the other hand, the 
category of Artificial surfaces/Urban areas is expected to expand significantly. The area is projected to grow from 
91.37 km2 (12.75%) in 2020 to 113.43 km2 (15.83%) in 2030, representing a net increase of 3.08%. This suggests 
that urban development and human-made structures will continue to increase over the past decade. The growth 
and expansion of metropolitan areas in 2030 are supported by [19], who argued that Kigali's residents will 
continue to increase exponentially (Figure 5). The districts where future urban area expansion is anticipated are 
primarily Gasabo, Nyarugenge, and Kicukiro, as illustrated in Figure 5. The same districts have shown some degree 
of dispersion over the past decade, with Gasabo's built-up area being marginally denser at 40.60 km2 than those 
of Nyarugenge and Kicukiro, which are at 12.52 km2 and 20.36 km2, respectively [40]. 
 

5. Conclusion  
 

Over the past decade, the city of Kigali underwent significant landscape transformations, as revealed by an 
analysis of land use and land cover changes between 2010 and 2020. While there were minor variations in the 
distribution of LULC categories, the growth of artificial surfaces/urban areas was substantial, indicating a need for 
sustainable urban planning and policies to preserve natural habitats and resources. The analysis further revealed 
that land cover categories such as Cultivated Land, Grassland, and Shrubland are at a greater risk of being 
transformed into urban areas, potentially leading to vegetation loss. On the other hand, forests, Wetlands, and 
water bodies had lower probabilities of transformation, highlighting the need for their conservation. The study 
also predicted that by 2030, artificial surfaces/urban areas will account for approximately 15.85% of the total land 
area. Cultivated land, Forests, and grassland will continue to constitute a significant portion of the land area. In 
addition, conservation efforts have helped maintain the expected area of wetland ecosystems, emphasizing the 
significance of preserving natural habitats and open spaces. The findings of this study underscore the importance 
of managing urban growth and preserving natural resources, especially in the context of rapid urbanization. The 
use of remote sensing and GIS techniques was effective in analyzing and tracing LULC changes in Kigali, and similar 
approaches can be used in other African cities better to understand the effects of population pressure and 
urbanization. By adopting sustainable urban planning and policies, we can ensure cities like Kigali's long-term 
ecological and environmental sustainability. 
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