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 Land Use Land Cover (LULC) detection is a crucial indicator of environmental change 
since it is associated with the climate, ecosystem procedures, land degradation, 
biodiversity and increased human actions. The objective of current study is to 
observe how main LULC class changed in Iraq from 1982 to 2019. Overall, 5259 
Landsat 4, 5 and 8 images were utilized for land classification. In the study, Random 
Forest classification method was performed in Google Earth Engine (GGE) platform. 
The research has established the accuracy assessment of overall accuracy and kappa 
coefficient of four periods are 95% or higher. The trend of classes demonstrated that 
built up class increased dramatically by 248.6%. In contrast, bare soil, which covers 
most territories of Iraq decreased by 8.4% (30,212 km2) from Period 1(1982-1989) 
to Period 4 (2010-2019). Likewise, vegetation class decreased by 20.2% (8,151 km2) 
during the same period.  

 

 
 
 
 
 
 
 

1. Introduction  
 

Land is a significant natural resource, which covers the solid feature of the surface. Due to economic growth, 
land resources are now widely exploited in terms of industrial development, urban growth, and the conversion of 
forests to agricultural lands [1]. In recent decades, the subject of land use/land cover (LULC) has been a significant 
aspect of environmental change and climate change studies. LULC has a major impact on global modification due 
to its associations with the climate, ecosystem procedures, land degradation, biodiversity and increased human 
action [2]. The physical condition and biotic constituent of the earth surface are called land cover [3]. While 
alterations of land cover by man are called land use [4]. Determination of changes in physical land cover over a 
series of time is called change detection, which is the most significant aspect of environment alteration [5]. 
Furthermore, rapid modifications in LULC have caused a drastic drop in green area [6]. 

LULC is growing and changing rapidly around the world and this poses a very high risk to parts of the ecosystem 
such as water bodies, soil, and temperature, especially in urban centers [4]. Human actions have principally 
reflected the land cover change dynamics [7-8]. Atmospheric rotation, vegetation protection, biogeochemical and 
energy cycle are multiple processes of the earth that have an impact on the land cover changes [9]. Evaluation of 
LULC is a significant criterion for effectively planning land reserve management. It is a key component for up-to-
date plans in protecting natural resources and observed changes in the environment which is assets to develop 
balance conservation strategies and enlargement pressure [10]. 
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Urbanization plays an important role in LULC transition through the substitution of natural land cover for 
habituated area and vegetation for economic reasons and facilities. Urbanization involves changes in land cover 
by structural engineering constraints such as highways, houses [4]. Urban populations are expanded faster than 
rural places, with high migration levels in metropolitan sites. Urban dwellers were projected to be approximately 
(3) billion people, and it is predicted to rise to 60% by 2030. 

The major driving forces for land use alteration are industrial development, urbanization, population growth 
and economic reforms [11]. LULC changes such as the abandonment of agricultural land are capable of being 
caused by an accelerated socio-economic alteration [12]. The researchers [13-14] demonstrate that political and 
socio-economic improvements influence urbanization. Their findings suggest that, in their case study, urban sites 
were key economic advancements. Political conflicts could have socio-economic, permanent or irrecoverable 
damage on cultivation. Thus, during the Iraq-Iran war of 1980-1988, the systematic desiccation of grassland led 
to devastating LCLU changes, biodiversity and human-induced operations. Not to mention that, in the period of 
2003-2015, urbanization processes remarkably increased due to the socio-economic and political factors. 

Currently, Google Earth Engine (GEE) is available as a powerful cloud computing platform that manages 
enormous volume of remote sensing data. It hosts a massive pool of remote sensing and geospatial datasets. In 
addition, a number of famous machine learning algorithms have been applied. Supervised classification is one of 
this filed. For instance, Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF) classifier are 
available in the platform. Previous classification studies have demonstrated that RF outperformed and is easier 
than other classifiers such as DT. In addition, RF is overtraining and has presented high accuracies in several 
studies [15-19]. 

Satellite images were widely utilized to study temporary LULC shifts. The application of remote sensing data 
has been implemented and accepted as an effective detection method for identifying LULC change [20]. Image 
satellites are capable of providing reliable and relevant data for decision-makers in different fields concerning 
vegetation and crop production [21]. Researchers [22-25] utilized satellite images to analysis, monitor and 
measure the patterns of LULC changes, principally in large areas that experience rapid alterations in land use.  
Remote sensing data is a potentially powerful tool for detecting changes in LULC at higher temporal resolutions, 
reduced coasts, synoptic views, repetitive coverage and gaining real-time and conventional methods [26]. 
Numerous studies have validated the successive application of several satellites such as MODIS, Aster, Landsat 
[27-33]. The Landsat TM/ETM/OLI data have been broadly utilized for many research as an accessible remotely 
sensed data [34-40]. Despite the significant conversion of LULC classes in Iraq during last four decades, not 
sufficient study was conducted in this field at the country scale. Mostly, LULC study in Iraq focused on specific 
cities and they relied on a short period of satellite data. Therefore, the objective of current research is to observe 
how main LULC class changed in Iraq from 1982 to 2019. 
 

2. Material and Method 
 
 

2.1. Study area 
 

Iraq is one of the Middle-Eastern countries located in southwestern Asia. It shares a boundary with Turkey 
from the north, Iran from the east, Syria and Jordan from the west, Saudi Arabia and Kuwait from the South (Figure 
1). The total area of Iraq is 438,320 km2 and the northern part of the study area are mountainous regions, which 
are about 3,550 m above the sea level. Whereas, the south part of the study area includes the desert area which 
covers around 40% of the total land of Iraq [41]. LULC is growing and changing rapidly around the world and this 
poses a very high risk to parts of the ecosystem such as water body, soil, and temperature, especially in urban 
centers [4]. 

Iraq has a unique climate; a Mediterranean climate combined with a subtropical semi-arid climate, especially 
in the north and northeastern parts. These areas are the first to experience precipitation in the November to April. 
However, December to February is precipitation season in the middle and south of the country. Mean annual 
precipitation is 216. The most rain is fall in the northeastern parts, which is around 1200 mm on average. 
Contrastingly, the southern parts receive 100 mm. July and August are the hottest months of summer, with 
temperatures reaching 43 °C in the shade. The temperature in winter days is 16 °C on average, dropping to around 
2°C during nighttime [42]. 

Iraq includes nineteen governorates. Farmland makes up around 26% of the total area of the country while the 
remaining areas are unused. Agricultural and other areas that are sited on the extreme northern border with 
Turkey and Iraq is covered by forests and woodlands [43]. 
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Figure 1. Location of the study area 

 

2.2. Data  
 

For the first period from 1982 to 1989, the study utilized 150 images of Landsat 4 (TM calibrated top-of-
atmosphere reflectance, orthorectified scenes only.) less than 25% of cloud covers. For second period 1990 to 
1999, we utilized 810 Landsat 5 (Landsat 5 TM calibrated top-of-atmosphere reflectance, orthorectified scenes 
only.) with less than 10% cloudy images. For third period from 2000 to 2009, 626 Landsat 5 images (less than 
10% cloudy) were utilized. For the last period from 2010 to 2019, we utilized 3669 Landsat 8 images (Landsat 8 
Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance) less than 10% cloudy. Overall, 5259 Landsat 
images were utilized for classification in this study. With Landsat 4 and 5, bands 1 to 7 were selected and for 
Landsat 8, bands 2–7 and 10–11 were utilized in the study. For each period, the mean value between selected 
images was calculated. Then, mean images of all periods clipped to shapefile of Iraq. 
 
 

2.3. LULC classes 
 

In the current study, we were attended to exemplify the fundamental LULC classes of a landscape conversion 
in Iraq. We recognized four main LULC classes of interest: Bare soil, Built-up, waterbody (e.g., rivers, lake, dam) 
and vegetation (e.g., grass, trees, cropland, agriculture and pasture). For LULC conversion that is associated with 
urban growth, conversion of vegetation and bare soil to build up is important. Furthermore, these classes are 
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possible to identify in scale of Landsat images. The study period was divided into four periods; P1 from 1982 to 
1989, P2 from 1990 to 1999, P3 from 2000 to 2009 and P4 from 2010 to 2019.   
 
2.4. Methodology 

 
GEE is utilized in this study for the images processing and performance of classification. The main steps are 

selecting images of Landsat within four periods; generating pixel-based mean value of each period, selecting 
samples of testing and validation points, producing classified maps, and post-classification to assess accuracy of 
classified maps. 
 
2.4.1. Random forest classification.  
 

In this research, the RF procedure was utilized for pixel-based LULC classifications because previous studies 
confirmed that the performance of RF is higher than other classifiers [44]. An RF is fundamentally an aggregate 
method that creates a multitude of decision trees and produces the mean prediction of the individual trees [45]. 
In our classification, 600 samples were selected for each period; 150 samples of each class. Samples are divided 
into two categories; 70% of samples utilized as training points and 30% of samples utilized as testing points for 
validation. In each period, we utilized an RF classifier with 10 decision trees. Classified images exported from GEE 
to Google Drive then downloaded. 
 
2.4.2. Accuracy assessment 
 

The accuracy of a classifier is the ability of method to properly classify a collection of samples. The data that 
utilized to experiment with the performance of the method should be different than the data utilized to train the 
classifier [46]. In case of inability of ground truth samples, for instance, samples of the land cover of previous 
decades, reference data is usually separated to training and experiment sets. Four evaluation classifier, overall 
accuracy (OA), Kappa coefficient, producer accuracy, and user accuracy were measured. Overall accuracy verifies 
the overall efficiency of the method that is calculated by dividing the total number of correctly considered samples 
by the total number of the testing samples. While, the Kappa coefficient demonstrates the degree of agreement 
between the validation data and the predicted values [47]. In this study, we utilized 30% of samples from 600 
samples as testing points for validation. For accuracy assessment, Kappa and overall accuracy were derived by 
using error Matrix of classified image of each period. Then classified images were utilized in GIS tools to create a 
comparative figure of LULC classes during the different periods in the country. 
 
 

3. Results and discussion 
 

3.1. Accuracy assessment 
 

Post classification comparison is utilized to demonstrate LULC changes between 5259 Landsat satellite images 
for different periods. LULC changes were extracted from Landsat images satellite for different periods. The 
accuracy assessment of overall accuracy and kappa coefficient are 98% and 97%, 96% and 95%, 98% and 97%, 
99% and 99% in the first, second, third and fourth period, respectively, as demonstrated in Table 1. The highest 
overall accuracy achieved was in 2010-2019 around 99%; moreover, the kappa coefficient for the same period 
was 99%. When kappa coefficient values are greater than 80% it represents strong agreement with the ground 
truth and this range is widely utilized as a minimum level of acceptable accuracy for LULC change classification 
[48].  
 

Table 1. Accuracy assessment 
Period Overall accuracy Overall Kappa coefficient 

1982-1989 0.98 0.97 

1990-1999 0.96 0.95 

2000-2009 0.98 0.97 

2010-2019 0.99 0.99 

 
 

3.2. Land use/Land cover detection analysis 
 

According to land cover classification (Figure 2), the bare soil class covers most of the territory of Iraq. Bare 
soil is distributed on the west and north-west of the study area. The trend of bare soil started to decrease from 
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1982 to 2019. The northern part of the study area was dominated by vegetation, while in the central and south of 
the study area are a combination of dense vegetation, built-up and water body.  

Figure 2 and Table 2 illustrate the changes in LULC proportions over the examined periods. Bare soil area was 
changed from 17,584, 41,588, 50,753 and 61,296 Km2 in the P1, P2, P3, and P4, respectively. From P1 to P4 it 
decreased by 8.4%. The trend observed the built-up class increased dramatically by 248.6% from 17,584 km2 in 
1982 to 61,296 km2 in 2019. While, the trends observed in vegetation proportion follow the opposite direction; 
vegetation increased from 40,414 in P1 to 69,098 km2 in P2, while the trends observed decreased to 37,496 km2 

in P3 and 32,264 km2 in P4. Overall, from P1 to P2 vegetation class decreased by 20.2%. Waterbody coverage 
decreased from the first three decades from 9,596 to 3,983 km2, however, the trend was increased through the 
last decade to arrive 7,111 km2. The water bodies in the study area include rivers, lakes and irrigation water.  
 

 
Figure 2. Land Use Land Cover Change. a: period 1982-1989, b: 1990-1999, c: 2000-2009, d: 2010-2019 

 
Table 2. LULC classes change from period 1982_1989 to 2010_2019  

P1: 1982-1989 P2: 1990-1999 P3: 2000-2009 P4: 2010-2019 Changes from 
P1 and P4 

Classes % Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

Built-up 4.1 17,584 9.6 41,588 11.8 50,753 14.2 61,296 248.6 43,712 

Water body 2.2 9,596 1.3 5,682 0.9 3,983 1.6 7,111 -25.9 -2,485 

Bare-soil 84.2 360,977 73.0 315,067 78.6 339,202 76.7 330,765 -8.4 -30,212 

Vegetation 9.4 40,414 16.0 69,098 8.7 37,496 7.5 32,264 -20.2 -8,151 

 
 

The geographical distribution of different LULC classes was demonstrated in the four periods. The ratio 
between areas of land cover was utilized at different decades to illustrate land cover changes as demonstrated in 
Table 2. The main conversion to Built-up area occurred from Vegetation and Bare soil classes. From P1, P2, P3 and 
P4 the Built-up increased dramatically from 4.1, 9.6, and 11.8 to 14.2% respectively (Figure 3). This conversion is 
natural when we making a comparison between the populations of Iraq from 1984 to 2019. The population of Iraq 
increased 172.37% in the same period based on Worldometer's elaboration of the latest United Nations data. This 
increase in the population has already caused urban growth. Most bare soil in Iraq is a desert area. The conversion 
of bare soil areas into a built-up area has been reduced this class over time. In particular, Bare soil class decreased 
from 84.2 in P1 to 76.7% in P4.     
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Figure 3. Land use land cover change in Iraq from 1982 to 2019 (%) 

 

 
Figure 4. Trend of precipitation in Iraq from 1981 to 2019 based on Climate Hazards Group Infrared 

Precipitation with Station Data [49] 
 

Vegetation cover was observed more density in the north part of the study area. The vegetation of the study 
area consists of agriculture, forest, pasture and grass areas. Most distribution of vegetation depends on the fed-
rain. Therefore, there is a relationship between annual precipitation and the increase or decrease amount of 
vegetation in the study area. Figure 4 and Table 3 illustrate the trend of rainfall in the study area from 1981 to 
2019. The trend of precipitation increased from P1 to P2. This change in the trend of rainfall effect on the amount 
of vegetation in the same period. Vegetation cover was increased from 9.4 to 16.0% from P1 to P2 which is 
associated with the same period of rainfall increasing, while vegetation cover was decreased by 8.7 to 7.5% from 
P3 to P4. Trend rainfall changes effect directly on the amount of vegetation distribution. There are several factors 
that additionally impact on vegetation such as wildfire and many political and economic crises that assist to land 
cover degradation such as Iraq and Iran war from 1980 to 1988, the economic blockade against Iraq from 1991 to 
2003, poor state administration. Especially, in central and southern of the country has been leading to breakdown 
land cover management after 2003. 
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Table 3. Precipitation in Iraq from 1981 to 2019 based on climate hazards group infrared precipitation with 
station data 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

1981 222 1991 182 2001 224 2011 175 
1982 235 1992 172 2002 201 2012 198 
1983 181 1993 225 2003 204 2013 214 
1984 190 1994 191 2004 208 2014 195 
1985 205 1995 188 2005 194 2015 190 
1986 211 1996 201 2006 256 2016 213 
1987 191 1997 182 2007 182 2017 197 
1988 253 1998 203 2008 143 2018 342 
1989 145 1999 204 2009 194 2019 271 
1990 156 2000 193 2010 182   

 

4. Conclusion  
 

Investigation four decades of LULC change in Iraq demonstrated how classes converted besides population 
growth and environmental changes. Nowadays, LULC detection is a crucial indicator of environmental change 
because it is associated with the climate, ecosystem procedures, land degradation, biodiversity and increased 
human actions. The objective of current research is to observe how the main LULC class changed in Iraq from 1982 
to 2019. Overall, in the study, 5259 Landsat 4, 5 and 8 images were utilized for land classification. We performed 
Random Forest classifier method in Google Earth Engine (GGE) platform. 

Our result achieved 95% and higher accuracy assessment of both overall accuracy and kappa coefficient of four 
periods. The trend of classes demonstrates that bare soil which covers most territories of Iraq decreased by 8.4% 
(30,212 km2) from 1982-1989 to 2010-2019. Moreover, vegetation class decreased by 20.2% (8,151 km2) during 
the same period. In contrast, built up class increased dramatically by 248.6% (43,712 km2). In the future, more 
research should be done to effectively treat the negative side effects of conversion vegetation and bare soil classes 
to build up areas in Iraq. 
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