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 River Basin Management is heavily reliant on satellite remote sensing technologies. 
Keeping track of a basin’s water supply and demand is essential for efficient and 
sustainable water resource management. In this study, The Limpopo River Basin’s 
monthly water budget components for the 2019 wet and dry seasons were determined 
using satellite measurements and the GLDAS-2.1 CLSM model. The water budget 
components, which include Precipitation, Evapotranspiration, Terrestrial Water Storage, 
and Runoff, were obtained from several satellite-based sources (GPM-IMERG, MODIS, 
GRACE & GRACE-FO). Runoff was calculated as a residual from the water balance 
equation because it could not be directly determined from remote sensing 
measurements. The datasets were prepared, investigated, and evaluated. The 
effectiveness of satellite remote sensing for estimating the water budget was assessed. 
The results showed good stability for the Precipitation and Evapotranspiration, but there 
were significant ambiguities in the Terrestrial Water Storage and Runoff. The 
precipitation results for the 2019 wet season were close from GPM-IMERG (~ 108 BCM) 
and GLDAS (~ 119 BCM). Both MODIS and GLDAS showed similar results for the 
Evapotranspiration for the 2019 dry season (18 BCM, 15 BCM respectively) The study 
demonstrated the benefits and drawbacks of GLDAS-2.1 CLSM models with satellite-
based remote sensing for calculating water budgets. Since human impact is not 
considered in remote sensing and modeled data, caution should be used when employing 
them in ungauged areas. Given the limitations in GLDAS and remote sensing datasets, 
these data can be extremely helpful, especially in areas with limited data, for assessing 
seasonal and inter-annual changes in water components and river basin management. 

 
 
 
 
 
 

1. Introduction  
 

The availability of water is a significant issue in the twenty-first century [1]. Understanding the hydrologic cycle 
and how water travels through Earth’s atmosphere, land surface, and subsurface is necessary for ensuring 
sustainable water supplies [2]. Hydrologists and users can quantify the hydrologic cycle by using water budgets 
[3]. An evaluation of the rates of water flow and the change in water storage in the entire atmosphere, land surface, 
and subsurface is known as a "water budget" [4]. Water budgets are straightforward in concept, but they could be 
challenging to calculate precisely. To assess how much water may be available for human and environmental 
demands, it is critical for the public and decision-makers to understand the uncertainties that exist in water 
budgets and their relative relevance [5]. 

A river basin is an area of land that drains water into a river and its tributaries. A river basin collects rain or 
snow, and it drains into a common outlet such as a stream or a tributary lake or wetland, where it eventually flows 
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into the river. River Basin is major source of fresh water for drinking and agricultural activities, which makes it 
the lifeblood of the area surrounding it. Moreover, there are 263 trans-boundary river basins covering about half 
the earth’s surface [6]. About 145 states have territory within trans-boundary lakes or river basins, and 30 
countries lie entirely within trans-boundary rivers, and it has been noted that since 1948 there have been 37 
incidents of acute conflict over water [7,8]. The components of water budget include Precipitation, Evaporation, 
and transpiration (Evapotranspiration), infiltration, Total water Storage (Soil moisture, reservoirs, and 
groundwater storage) and Runoff [9]. 

Surface-based gauges (rain gauges) and remote sensing measurements can be used to measure Precipitation. 
But since gauge-based observations are dependent on points, the uncertainty in Precipitation values grows as one 
gets further away from the measuring station [10,11]. Evapotranspiration is the total of all evaporation and 
transpiration processes that transport water from the ground surface to the atmosphere. When using in situ 
methods to measure Evapotranspiration at large scales, spatial variability is typically substantial. Numerous 
factors (such as solar radiation at the surface, air and ground temperatures, surface winds, humidity, soil 
conditions, and vegetation cover and types) affect Evapotranspiration [12]. Runoff is water that runs off into the 
stream and eventually out of the watershed or sub-basin. Hydrological stations can be used to monitor Runoff 
variations, although many basins across the world have a dearth of or a patchy distribution of these stations [13]. 
A crucial part of the hydrological cycle, which encompasses all types of surface and subsurface water, is Terrestrial 
Water Storage (TWS). Surface measurements are still very important but point measurements have non-uniform 
coverage and data void regions. Although point measurements have non-uniform coverage and data empty zones, 
surface measurements are still very useful [14]. 

The management of water resources is increasingly dependent on satellite remote sensing technologies. When 
opposed to ground-based nonuniform observations [15], satellite remote sensing offers global coverage and 
spatially uniform data. One of the key benefits of earth-observing satellites is their ability to give reliable 
Precipitation estimates on a global scale with high spatial and temporal precision. This capability includes 
providing Precipitation data over data-restricted regions [16]. Several researchers have recently investigated how 
well satellite-based rainfall estimates perform. Remotely sensed Precipitation products have been suggested as an 
alternative in terms of time and space for data-scarce areas because of the encouraging findings that have been 
reported [17-20]. This paper aim to estimate the Limpopo River Basin terrestrial water budget from GLDAS 2.1- 
CLSM and remote sensing observations and compare the results to assess how well satellite remote sensing 
performs in estimating water budgets, and to examine and contrast the spatial patterns between satellite data and 
earth system model data. 
 

2. Material and Method 
 

In this study, earth system modeling and remote sensing datasets (Table 1) were utilized for evaluating the 
water budget in the 2019 wet and dry seasons in the Limpopo River basin (December 2015-February2016) and 
(June2016-August2016) respectively. The Shuttle Radar Topography Mission (SRTM) provided a Digital Elevation 
Model (DEM) for the research area with a 1 arc-sec (∼ 30 m) grid resolution. The basin and its network of streams 
were defined using the DEM. Due to the GLDAS-2.1 CLSM model’s ability to represent groundwater and the high 
performance of the data assimilation framework, it was chosen to be used with their Level-4 monthly output data 
for comparative comparison. Datasets from GLDAS 2.1 are accessible at 1° spatial resolution. The model’s outputs 
for Surface Runoff (R), Terrestrial Water Storage (TWS), Evapotranspiration (ET), and Precipitation (P) on a 
monthly average were retrieved from NASA’s Goddard Earth Sciences Data and Information Services Center. To 
test the water budget estimation utilizing solely remote sensing data, satellite-based hydrological datasets from 
several sources were acquired. 
 

2.1. Study Area 
 

Southern Africa is home to the Limpopo River basin, which includes parts of Botswana, Mozambique, South 
Africa, and Zimbabwe. The Limpopo River Basin is situated between the latitudes of 20°S and 26°S and the 
longitudes of 25°E and 35°E in Southern Africa as shown in Fig. 1. There are several problems in the Limpopo River 
watershed, but one of the biggest is water scarcity. The Limpopo River basin drains an area of around 408,000 
𝐾𝑚2. The Limpopo River flows from the junction of the Marcio and Crocodile Rivers in South Africa to the Indian 
Ocean at Xai Xai in Mozambique across more than 1,750 km. Before entering Mozambique at Pafuri, the river forms 
the border between Botswana and South Africa, then between Zimbabwe and South Africa. The climate of the 
Limpopo River basin varies along the path of the river from the temperate climate of the Western basin to the 
subtropical environment at the river mouth in Mozambique. The minimum and maximum summer temperatures 
within the catchment range from 14°C to 25°C, whereas the minimum and maximum winter temperatures range 
between 0°C and 17°C, respectively, during the chilly winter months [21]. The basin receives 530 mm of rain on 
average annually, with rainfall varying from 1200 mm in the Southeast to 200 mm in the central-West [22]. Due 
to the climate’s wildly erratic rainfall patterns, there are both relatively dry years and years with floods. With rates 
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ranging from 1,000 mm/year in the Southern half of the basin to 2 000 mm/yr in the north, Evapotranspiration 
across the basin is high in comparison to rainfall according to the Food and Agriculture Organization (FAO) [23]. 
 

Table 1. List of hydrological variables used in this study. 

Variable Product 
Spatial 

resolution 
Temporal 
resolution 

Time Span Website 

Precipitation 
GPM IMERG V6 0.1° Monthly 

06/2000-
Present 

https://giovanni.gsfc.nasa.gov/giovanni/ 

GLDAS-2.1 CLSM 
output 

1° Monthly 
01/1981-
Present 

https://daac.gsfc.nasa.gov/ 

Evapotranspiration 
MOD16A2 500m 8-day 

12/1999-
Present 

https://appeears.earthdatacloud.nasa.gov/ 

GLDAS-2.1 CLSM 
output 

1° Monthly 
01/1981-
Present 

https://daac.gsfc.nasa.gov/ 

TWS 
GRACE 0.1° Monthly 

03/2002-
Present 

https://grace.jpl.nasa.gov/ 

GLDAS-2.1 CLSM 
output 

1° Monthly 
01/1981-
Present 

https://daac.gsfc.nasa.gov/ 

Runoff 
GLDAS-2.1 CLSM 

output 
1° Monthly 

01/1981-
Present 

https://daac.gsfc.nasa.gov/ 

 
 

2.2. Methods  
 

First, the DEM data was used to delineate the basin and its stream network using Arc Hydro Tools within the 
ArcGIS environment. The hydrological raster data were then subjected to image pre-processing to prepare them 
for analysis. The Raster Calculator function was then used to change the variable units to millimeters each month. 
The values for each variable were then retrieved from the monthly basin averages using Zonal Statistics. The 
monthly data were compiled for the basin water budget calculation, and calculations were made using the general 
water balance equation. To produce the overall seasonal quantities, the seasonal accumulated components were 
finally multiplied by the basin area. Below is provided the general water balance equation. 

 
P=ET+R+ΔS 

 
Where P is Precipitation, ET is Evapotranspiration, R is Runoff, and ΔS=ds/dt is change in surface and 

subsurface water storage. It is important to note that the water balance calculation does not explicitly account for 
water quantities used for agriculture or other residential purposes, due to the lack of a mechanism for estimating 
such values that is universally consistent. Studies are typically carried out to ensure the accuracy and caliber of 
observations both before and after the launch of earth observation satellites and the introduction of new services. 
By contrasting the findings with remotely sensed data, and model outputs, validation studies can be carried out. 
Utilizing in situ research and other techniques, all the data used in this study have undergone comprehensive 
validation. Many academics have separately assessed remote sensing Precipitation datasets like TRMM and GPM. 
Various studies have evaluated Evapotranspiration data from MODIS. Multiple studies have validated the forcing 
data as well as the GLDAS outputs. 
 
 

3. Results  
 

For each season, the amounts of Precipitation, Evapotranspiration, Runoff, and Change in Terrestrial Water 
Storage were estimated. In this part, satellite-based water budget elements are assessed by comparing them with 
model results and measured data. 
 
3.1. Precipitation 
 

The regional distribution of total Precipitation for the wet and dry seasons is depicted in Fig. 2 using data from 
remote sensing observations (GPM IMERG) and the GLDAS model (CLSM). Due to the limited spatial resolution of 
GLDAS outputs, extracting raster by mask can result in loss of data; to address this problem, the shape extent 
coordinates were employed. then the Zonal Statistics tool in ArcGIS was used to get the area average data. IMERG 
data underestimates Precipitation over the Northeast region in the wet season, While GLDAS showed 
underestimation only on the East region. GLDAS offered higher Precipitation rates than IMERG. The variations in 
the datasets may result from the models’ use of various forcing data. 
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Figure 1. Study Area- Limpopo River Basin 

 
3.2. Evapotranspiration 

 
Using data from remote sensing observations and GLDAS CLSM, Fig. 3shows the seasonal area-averaged total 

Evapotranspiration for the water in the wet and dry season for the Limpopo River Basin. MODIS and GLDAS data 
show High rates of Evapotranspiration on the North, South, East regions in the wet season. Even while ET maps 
produced from GLDAS outputs have relatively low spatial resolutions, certain similarities can be seen in the 
patterns. 

 
3.3. Terrestrial Water Storage Change 

 
The water cycle relies heavily on Terrestrial Water Storage. The difference of monthly TWS over the study 

period was used to calculate the values of DTWS derived from the GRACE and GLDAS models. Change in TWS 
derived from two model outputs and GRACE product are shown in Figure 4. Most of the regions show discrepancies 
between the GLDAS outputs and GRACE DTWS. The variations could result from a variety of factors such as Spatial 
signal-leakage from adjacent areas is probable due to GRACE’s coarse resolution (330 x 330 km), particularly at 
the sea boundary. The monthly grids have greater inaccuracies when the orbit is close to an exact repeat, which 
leads to incorrect gravity field estimations. Additionally, uncertainty in P, ET, and R results in uncertainty in TWSC. 
Another reason for the differences between the GRACE TWSC and GLDAS models could be that the GLDAS model 
does not take lake and river modules into account. It is GRACE’s and GLDAS’s primary drawback. 

 
3.4. Runoff 

  
Figure 5 illustrates the seasonal total Runoff derived using the GLDAS-CLSM model and the residual (P-ET-

TWS) from the water balance equation for the 2019 wet and dry seasons. We calculated the residuals to determine 
if we can interpret those numbers as Runoff in the basin as R cannot be determined directly from satellite data. 
This study’s objective is to evaluate each component’s behavior over the Limpopo River basin rather than to 
resolve the water balance. Figure 5 shows that exact R values cannot be determined, not even from model output 
residuals. 
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Figure 2. Average total Precipitation for the Wet and Dry season in 2019 a and b GPM IMERG (remote sensing 

observation), c and d GLDAS CLSM 
 

 
Figure 3. Average total Evapotranspiration for the Wet and Dry season in 2019 a and b GPM IMERG (remote 

sensing observation), c and d GLDAS CLSM 
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Figure 4. Total Difference Terrestrial Water Storage (DTWS) for the Wet and Dry season in 2019 a and b GPM 

IMERG (remote sensing observation), c and d GLDAS CLSM 
 

 
Figure 5. Total Runoff (R) for the Wet and Dry season in 2019 a and b GLDAS-CSLM for 2019 wet and dry 

Season, c and d water residual calculated from using water balance equation (P-ET-TWS) for 2019 wet and Dry 
Season 
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3.5. Evaluation of Water Budget Estimation 
  

Figure 6 depicts the Limpopo Basin’s basin-averaged water budget components in billion cubic meters for both 
the wet and dry seasons in 2019. It shows the total Seasonal P, ET, R, and TWSC calculated using the GLDAS models 
and observations from remote sensing. For R, ET and TWS, the results between IMERG and GLDAS were close to 
each other for both seasons. However, there was a noticeable difference in the Runoff observation. GLDAS Seems 
to underestimate the runoff values. The GLDAS-2.1 simulations do not incorporate stream flow routing; hence the 
modeled R has significant inaccuracies relative to the observed values. 
 

 
Figure 6. Seasonal water budget components of the Limpopo River Basin for the 2019 wet and dry seasons 

 
 

4. Conclusion  
 

This study used publicly available monthly satellite data and GLDAS model output products for the wet and dry 
seasons of 2019 to analyze GIS data over the Limpopo River Basin and assess the primary water balance 
components (P, ET, R, and TWSC). GPM-IMERG, MODIS, GRACE, and GLDAS-2.1 CLSM products were used to 
determine the amounts of Precipitation, Evapotranspiration, Runoff, and change in Terrestrial Water Storage. The 
findings showed how the basin’s overall water budget components changed on a seasonal basis. The results 
showed some similarities especially for the Precipitation and Evapotranspiration. The change in Terrestrial Water 
Storage was estimated with the greatest degree of uncertainty. The modeled Runoff products varied greatly from 
one another. The residual from the water balance equation (P-ET-TWSC) was interpreted as Runoff in order to 
investigate the indirect approach because precise Runoff cannot be determined using remote sensing. When the 
residual quantities were compared to the Runoff levels predicted by the model, the findings revealed sizable 
disparities. Due to numerous uncertainties, including the limited resolution of GRACE & GRACE-FO and large 
mistakes in MODIS Evapotranspiration, closing water balance continues to be difficult. Due to the difficulty of 
modeling/observing all the water components in a basin, there are limits in determining the overall water budget 
utilizing the outputs of the GLDAS model and satellite-based remote sensing data. For instance, groundwater 
pumping, irrigation, and stream flow. 
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