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 Accurate prediction of reference evapotranspiration (ET0) is crucial for climate change 
mitigation, water resources management, and agricultural activities. Therefore, this 
study aimed at investigating the applicability of a recently developed machine learning 
model called Gaussian Process Regression (GPR), for the prediction of ET0 in Araban 
station, Gaziantep region Türkiye. Artificial Neural Network was also developed for 
comparison. Several meteorological variables including temperatures Tmin, Tmax and 
Tmean (minimum, maximum and mean), surface pressure, wind speed and relative 
humidity from 1990 – 2021 were used as the inputs. The determination coefficient (R2), 
root mean square error (RMSE), and mean absolute deviation (MAD) were used as 
performance evaluation criteria. The obtained results revealed that GPR led to better 
performance with MAD = 0.0174, RMSE (normalized) = 0.0236, and R2 = 0.9940 in the 
validation step. The general results demonstrated that GPR could be employed 
successfully to accurately predict ET0 in Araban station and thus, could be useful to 
decision makers and designers of water resources structures. 

 
 
 
 
 

1. Introduction  
 

Evapotranspiration (ET) plays a vital role in water resources management and planning and is amongst the 
most important components of hydrologic water cycle [1]. ET can be instrumentally measured or obtained by 
reference evapotranspiration (ET0) calculation [2]. The ET0 serve as the basis for computing crop 
evapotranspiration (ETc) as well as irrigation water requirement of crops [3]. Penman Monteith model by Food 
and Agricultural Organization of United Nations (FAO) has been accepted as the main method for estimating ET0 
in hourly, daily and monthly scales [4]. 

The history that relates ET to meteorological variables can be traced as back as early 19th century [5]. 
According to Chen et al. [6], up to six classes of methods have been developed including (1) mass transfer methods 
(for example, Shiri [7]  improved mass transfer based ET0 estimation approaches through wavelet-random forest 
methodology); (2) pan evaporation methods; (3) combination methods; (4) temperature based methods; (5) 
water budget methods and (6) radiation based methods (for example, Shiri [8]  used mass transfer, temperature, 
radiation based ET0 equations and a heuristic model to access the practical implications of ET0 modeling in island 
environments.  
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For the past decades, artificial neural network (ANN) has been given significant attention in numerous fields 
of study including ET0. Dimitriadou and Nikolakopoulos [9] applied for ET0 prediction at Peloponnese Peninsula, 
Greece. Farooque et al. [10] employed ANN for daily ET0 forecasting for sustainable irrigation scheduling. Under 
climate change scenarios, Maqsood et al. [11] projected ET0 using ANN. Despite the nonlinearity of ANN and its 
ability to deal with nonlinear aspect of ET0, it has some limitations which include over-fitting, time delay in 
choosing the best befitting structure etc. To overcome these and other issues, a recently developed model called 
Gaussian Process Regression (GPR) was employed in this study to predict ET0 at Araban station, Gaziantep region 
in Türkiye.   
 

2. Material and Method 
 

2.1. Study Area 
 

Araban is located in Gaziantep province of Türkiye and is bordered from North by Adıyaman district with 
latitudes (37°22° and 37°31). From South, Araban is bordered by Gaziantep district and Şanlıurfa left on its East 
side and Kahramanmaraş district on the West side. The climate of Araban is accepted as semi-arid region, Figure 
1 shows the study area. 
 

 
Figure 1. Study location in Türkiye 
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2.2. Data Normalization and Global Statistical Indicators 
 

The data used in this study including temperatures Tmin, Tmax and Tmean (minimum, maximum and mean), 
surface pressure (PS), wind speed (U2) and relative humidity (RH) from 1990 – 2021 were obtained from Türkiye 
meteorological organization and divided into 70% training (269) and 30% validation (115). Table 1 shows the 
descriptive statistics for all the data used. The independent variables used in this study were found to be influential 
for ET0 modeling in several studies including Abdullahi et al. [12] and Abdullahi and Elkiran [13]. 
 

Table 1. Data descriptive statistics of the employed variables 
Variable Minimum Maximum Mean St. Deviation Kurtosis Skewness 
RH (%) 22.0355 89.8997 55.2312 18.2547 −1.3730 −0.0860 

P (mm/month) 0.0000 248.8500 37.8972 40.5243 3.5807 1.6687 
Tmin (OC) −6.5503 22.1477 8.6896 8.0374 −1.3313 0.0377 
Tmax (OC) 2.9086 40.2871 21.7604 11.0927 −1.3727 0.0444 
Tmean (OC) −2.0969 31.0013 14.9186 9.7376 −1.3688 0.0454 
PS (kpa) 90.6881 92.2619 91.5040 0.3559 −0.9030 −0.1344 
U2 (m/s) 1.6971 3.8572 2.4769 0.4224 −0.0557 0.7130 

 
As seen in Table 1, the P values in the Araban region range between a minimum of 0 mm/month to a maximum 

of 248.850 mm/month which indicates that within the time span of the study, there were periods of dry season 
(no rainfall received) and periods of abundant rainfall (rainy season). The annual precipitation is above the 
threshold of water scarce climate (semiarid) which has amount between 200 – 700 mm/year according to 
Kašanin-Grubin et al. [14]. While the minimum and mean monthly temperatures (−6.5503 °C and −2.0969 °C) can 
be below the freezing point, the maximum temperature can be as high as 40 °C in the summer. As the percentage 
of water vapor is present in the air, the RH can be as high as approximately 90% in Araban station. 

The data used in this study were normalized to fall between 0 and 1 to ensure equal attention is given to all 
variables and to eliminate the inputs-output dimension according to Abdullahi and Tahsin [15] as: 
 

𝐷𝑛 =
𝐷𝑖 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

 (1) 

 
Where 𝐷𝑖  implies the ith data value and 𝐷𝑛 , 𝐷𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 represent the normalized, maximum and minimum data 

values, respectively. 
Determination coefficient (R2), root mean square error (RMSE) and mean absolute deviation (MAD) were used 

as performance indicator and information regarding them can be found from Ibrahim et al. [16] study as: 
 

𝑀𝐴𝐷 = 
1

𝑁
∑ |𝑝𝑖 − 𝑎𝑖|𝑛

𝑖=1  (2) 

  

𝑅2 = 1 −  
∑ (𝑎𝑖 − 𝑝𝑖

𝑁
𝑖=1 )2

∑ (𝑎𝑖 −  �̅�)2𝑁
𝑖=1

 (3) 

  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑎𝑖 −  𝑝𝑖

𝑁
𝑖=1 )2

𝑁
 (4) 

 
Where 𝑎𝑖 , 𝑝𝑖 , �̅�, and 𝑁 are the actual values, predicted values, mean of the actual values, and number of 

observations, respectively. 
 

 

2.3. Artificial neural network (ANN)   
 

The neural network analysis process and artificial neural networks (ANN) have a set of features. Among them, 
most feed-forward ANN models have a multi-layered structure. The ANN's simple network design consists of three 
layers: input, hidden, and output [15-16]. The network receives the input data from the input layer, and the 
number of inputs depends on the number of nodes in this layer. The weights of each neuron are connected to those 
of the neurons in the opposite layer, and each neuron computes each input variable [17]. The most popular 
techniques for identifying the neurons and layers in hidden layers are trial and error methods [18]. The 
performance has a huge impact on improving the reliability of the study results [19]. ET0 and other climatic factors 
are effectively used for prediction by artificial technology. Many researchers have recently developed highly 
accurate discoveries and significant prediction data that will be based on observed data used for future planning 
and development. An artificial intelligence approach was used to analyze the data sets. The ANN has three layers, 



Advanced Remote Sensing, 2023, 3(1), 27-37 
 

30 
 

as shown in Figure 2. The hidden input network serves as the intermediate input layer for all computations, while 
the output layer provides the final result for each input in the neural network [20]. 
 

 
Figure 2. Artificial neural network structure [25] 

 
2.4. Gaussian Process Regression (GPR) 

 
A relatively new machine learning approach is the Gaussian process regression (GPR) model. Elbeltagi et al. 

[17] the two key characteristics of GPR are (1) the stochastic process explained by the multivariable Gaussian 
probability distribution (GPD), and (2) the unbiased forecasting based on the linear combination of prior 
experimental observation. The most mathematical aspects of the GPR for the inputs (Xi) and outputs (Yi) domains, 
where Xi and Yi are independently and identically distributed, are the covariance-based kernel function and mean 
function. The GPR is described as: 

 
𝑓(𝑥)~𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥)) (5) 

 
where 𝑓(𝑥) is the regression. For "y" observation, the Gaussian noise function is: 
 

𝑦 = 𝑓(𝑥) + 휀  (6) 
  

휀 ≈ 𝑁(0, 𝜎𝑗
2)  (7) 

 
Where 휀 represents the noise of normal distribution function with 𝑁(0, 𝜎𝑗

2). 𝑘(𝑥, 𝑥) described according to 

Akbari et al. (2019) [22] represent the new way for noise combination in covariance function given as follows: 
 

𝑘(𝑥, 𝑥) = 𝜎𝑗
2 exp [

−(𝑥, 𝑥)2

2𝜏2
] + 𝜎𝑛

2𝛿(𝑥, 𝑥) (8) 

 
𝛿(𝑥, 𝑥) is the Kronecker delta function, where n is the number of y observations. For processing inputs in high-

dimensional feature space, selecting the right kernel can produce a decent map of the input series [23]. Below is a 
description of the key kernels. The Poly kernel, which enables the learning of nonlinear models, provides the 
similarity of vectors in a feature space. 

 
𝑘(𝑥𝑖 , 𝑥) = ((𝑥𝑖 , 𝑥) + 1)𝑑  (9) 

 
The normalized kernel version can improve model building by reducing sparse data. It can be stated as: 

 

𝑘(𝑥𝑖 , 𝑥) = 𝐾(𝑥𝑖 , 𝑥)/√𝐾(𝑥𝑖 , 𝑥𝑖)𝐾(𝑥, 𝑥) (10) 

 
A stationary kernel defined by the equation is called the radial basis function (RBF), often known as the 

"squared exponential" (11). 
 

𝑘(𝑥𝑖 , 𝑥) = 𝑒−𝛾|𝑥𝑖−𝑥|2
 (11) 

 
 

The Pearson Universal Kernel (PUK), an alternative to the general kernel function for curve fitting, was 
proposed by Pearson (1895). As shown in Equation 12, the kernel is mathematically described: 
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𝑘(𝑥𝑖 , 𝑥) = (1/[1 + (2√∥ 𝑥𝑖 − 𝑥 ∥
2 √2(

1
𝜔

) − 1/𝜎)2]𝜔 (12) 

 

 
Figure 3. Probabilistic graphical model or functioning of Gaussian process regression [21] 

 
2.5. Reference evapotranspiration (ET0) 

 
According to Allen et al. [4], for estimating ET0 the most common used energy balance physical-based equation 

is the Penman-Monteith equation (FAO56-PM) as proposed by the Food and Agriculture Organization (FAO). The 
(FAO56-PM) equation's performance is widely acknowledged as the most expert equation for estimating ETo [24]. 
The equation is given by Allen et al. [4] and Abdullahi et al. [25]: 
 

𝐸𝑇0 =
0.408𝛥(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑈2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34𝑈2)
 (13) 

 
Where 𝑬𝑻𝟎 is the reference evapotranspiration (mm/day), Δ is slope vapor pressure curve (kpa/°C), 𝑹𝒏 is net 

radiation at the crop surface (MJ/m2/day), G is soil heat flux density (MJ/m2/day), T is air temperature at 2 m 
height (°C), 𝑼𝟐 is wind speed at 2 m height (m/s), 𝒆𝒔 is saturation vapor pressure (kpa), 𝒆𝒂 is actual vapor pressure 
(kpa), 𝒆𝒔 − 𝒆𝒂 is saturation vapour pressure deficit (kpa), γ is psychrometric constant (kpa/°C). 
 
3. Results and Discussion 
 

In this study, the recently developed GPR model was applied to predict ET0 and compared with ANN model. 
Hence, the results are presented accordingly. Determining the dominant inputs can play a crucial role in modeling 
and prediction of ET0. Therefore, correlation analysis was performed to ascertain the most appropriate input 
variables in this study. Table 2 presents the correlation matrix of the employed variables.  
 

Table 2. Correlation analysis results of the used variables 
  Tmin RH P Tmean Tmax PS U2 ET0 

Tmin 1        
RH −0.9138 1       
P −0.6529 0.7619 1      

Tmean 0.9966 −0.9258 −0.6778 1     
Tmax 0.9921 −0.9401 −0.7028 0.9984 1    
PS −0.7642 0.6432 0.4191 −0.7869 −0.7807 1   
U2 0.6307 −0.6577 −0.4622 0.6642 0.6763 −0.7881 1  

ET0 0.9432 −0.9139 −0.6827 0.9605 0.9649 −0.8563 0.8173 1 

 
 

As shown by Table 2, due to the significance of temperatures, Tmax, Tmean, and Tmin in descending order are more 
correlated with ET0 than other variables with 0.9649, 0.9605, and 0.9432, respectively. In other words, 
temperature variables are the factors with the most influence on the ET0 prediction at Araban station. With this, it 
can be said that including the temperature variables as inputs would have a profound effect on the prediction skills 
of the machine learning (ML) models. The correlation of the input variables in descending order is Tmax, Tmean, Tmin 
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in, U2, P, PS, and RH. However, for ML applications, apart from the dominant variables, the input size has a great 
role to play in determining the highest performance. Therefore, 2 different input combinations were developed 
given as: 
 

M1 = 𝑓(𝑅𝐻 , 𝑃, 𝑇𝑚𝑒𝑎𝑛 , 𝑇𝑚𝑎𝑥) (14) 
  

M2 = 𝑓(𝑇𝑚𝑖𝑛 , 𝑃𝑠, 𝑈2) (15) 
 

 
It is worthy to clarify that these two input combinations of the models were selected due to the relation 

between the ET0 and the independent variables as demonstrated by Table 2. However, this study tried to ascertain 
the influence of number of inputs with respect to the ET0 prediction. As such, rich (4) and limited (3) input 
combinations were considered as shown by Equations (14) and (15). 

Where M1 and M2 are the developed models for ET0 prediction. The results of the ET0 prediction are shown in 
Table 3. 
 

Table 3. Results of the predicted ET0 based on ANN and GPR 

  Training Validation 
Model 
type 

Model 
N0. MAD RMSE R2 MAD RMSE R2 

ANN M1 0.0286 0.0401 0.9813 0.0299 0.0412 0.9816 

 M2 0.0308 0.0383 0.9841 0.0294 0.0380 0.9832 

GPR M1 0.0173 0.0224 0.9941 0.0174 0.0236 0.9940 

  M2 0.0241 0.0311 0.9888 0.0244 0.0323 0.9887 

 
As seen in Table 3, using different input combinations, different performances are achieved for both ANN and 

GPR models. For ANN models, similar performances are obtained. Although there is a slight difference between 
the developed models in the training step, the results are comparable in the validation step with R2 values of 
0.9816 and 0.9832 for M1 and M2, respectively. This shows that the accurate prediction of ET0 by ML does not 
depend on the number of inputs used, but rather on the quality of inputs. As such, M2 with 3 inputs can 
appropriately predict the behavior of the ET0 with less computational difficulties and less time-consuming. The 
improved performance of M2 could be attributed to the inclusion of U2 as input. According to Nourani et al. [18], 
despite having less influence on ET0 prediction when single input single output prediction is considered, U2 
significantly improves performance when combined with other variables as ET0 inputs. Figure 4 shows scatter 
plots and histograms of the observed and predicted ET0 for the best model (M2). 
 

 
Figure 4. Graphical comparison of the observed and predicted ET0 values for the best model 
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As can be seen in Figure 4, both actual and predicted values are concentrated towards the bisector line (line 

1:1) which implies an agreement between prediction by ANN2 and the actual ET0. It can also be seen with respect 
to the histogram in Figure 4 that the predicted values resemble the actual values. 

It is obvious from Table 3 contrary to the results for ANN models where M2 surpasses M1, the results for GPR 
models show an improved performance of M1 over M2 by 0.53%. The reported performances based on MAD, 
RMSE and R2 for M1 are 0.0173, 0.0224 and 0.9941 in the training step and 0.0174, 0.0236 and 0.9940 in the 
validation step. Whereas for M2, the MAD, RMSE and R2 values are 0.0241, 0.0311 and 0.9888 in the training step 
and 0.0244, 0.0323 and 0.9887 in the validation step. Figure 5 shows the scatter plots and histogram of the actual 
and GPR M1. 

 

 
Figure 5: comparison of actual values and best GPR model 

 
As shown by Figure 5, there is a good agreement between the actual and predicted values by GPR1. This shows 

that when adequate prediction skills are achieved, both the numerical and graphical results will exhibit similar 
outcomes. In terms of the histogram, the comparison shows how fitted values of the GPR1 model with respect to 
actual values. Besides the goodness of fit of the predicted values with respect to the actual values, graphical 
comparison in terms of error generated would be helpful in ascertaining the performance of the developed models. 
As such, Figure 6 demonstrates the performances of all the developed models based on MAD and RMSE.  
 

 
Figure 6. Performance comparison of all the developed models 
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Figure 6 compares the performance of all the applied models ANN1, ANN2, GPR1 and GPR2. It can be deduced 
from the figure that all the models could successfully be employed for ET0 prediction at Araban station with a 
minimal error. The employed radar chart indicates better performance with narrower value and less efficiency is 
achieved with wider value. Owing to this, it can be observed that with respect to the ML models developed, GPR 
led to better accuracy. In the meantime, GPR1 was found to be the most efficient performance when both MAD and 
RMSE are considered.  

However, to ensure robust assessment of the developed models, other performance metrics were applied via 
Taylor diagrams. The overall model performances are summarized using Taylor diagrams by taking into 
cognizance the RMSE between the model predictions and observed data, as well as pattern correlation and 
variability [26]. Standard deviation (SD), RMSE and correlation coefficient (CC) in the diagram are used to assess 
the similarity between predicted and observed records. Generally, underestimation is said to have occurred when 
the SD of the predicted values is lower than the SD of the actual values. Contrarily, overestimation occurs when 
the SD of the predicted values surpasses the SD of the actual values [27]. Figures 7 and 8 show the Taylor diagrams 
of the applied models in the training and validation steps. 
 

  
Figure 7. Performance comparison based on the 

Taylor diagram in the training step 
 

Figure 8. Performance comparison based on the 
Taylor diagram in the validation step 

 
 

As can be observed in the Taylor diagrams, different performances are displayed by different indices 
considered. In the validation step (Figure 8), all the models have SD values close to the actual value. In terms of CC, 
GPR-M2 demonstrated more efficient performance but all the models have CC values above 0.99. 

Intensification of agricultural activities through reduction of environmental impacts and increase in production 
with respect to plants per unit area is the best approach to ensure food production increase in a more sustainable 
manner (Farias et al. [30]). The increase in agricultural activities in Araban will in turn increase irrigation practice 
in the region. 

 Furthermore, improvement in irrigation practices may lead to conflicts over water use especially in areas 
where water is scarce. Therefore, accurate prediction of water losses is essential in agricultural and irrigation 
practices in Araban region. In such circumstances, strategies for irrigation management can essentially be 
developed through the precise estimation of crop evapotranspiration (ETc). According to Elkiran and Abdullahi 
[31] study, the ETc is obtained by multiplying crop coefficient (Kc) with ET0. Consequently, accurate prediction of 
ET0 achieved in this study will assist in ascertaining the ETc in the area which will in turn help in improving the 
agricultural water management and irrigation practices in Araban region. 
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4. Conclusion  
 

This study was performed to assess the possibility of employing a recently developed model called gaussian 
process regression (GPR) to improve the performance of machine learning (ML) based artificial neural network 
(ANN) for the spatiotemporal prediction of reference evapotranspiration (ET0) in Araban, Gaziantep region, 
Türkiye. To achieve this, 2 different input combination models were developed using RH, P, Tmean, and Tmax as M1 
and Tmin, PS, and U2 as M2 for both ANN and GPR models for data that spanned from 1990 - 2021. 

The obtained results showed that the ML models are sophisticated tools for ascertaining the stochastic 
phenomena surrounding ET0. Both M1 and M2 can lead to high performance but M2 slightly outperforms M1. 
However, when fewer simulation difficulties, as well as less time-consuming, are more important, M1 is preferable. 
The overall results show that GPR performance is better than ANN. From the results of this study, it is obvious that 
GPR model with its high precision can be applied in several regions in Türkiye in particular and world at large for 
the prediction of ET0. For regions that share similar meteorological climate, for instance Gaziantep district, similar 
results can be achieved and the results from the Araban station can be extended other locations within the vicinity 
of the climate.  
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