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 Vegetation plays an important role in supporting our lives by maintaining many 
environmental and ecological services. Forests, as part of the vegetation cover, are the 
most critical components of the Earth's carbon cycle. The information about the forest 
structure is vital for ecosystem health, carbon cycle assessment, and a better 
understanding of the forest resources. Forest structural parameters estimation by field-
based methods has limitations, such as being expensive, impractical, labor-intensive, and 
time-consuming at a large scale. Remote sensing has proven to be a more competent and 
low-cost tool for monitoring and measuring forest parameters compared to field surveys. 
Active remote sensing systems i.e., Light Detection and Ranging (LiDAR) and Radio 
Detection and Ranging (RADAR) provide horizontal and vertical forest structure 
information. In addition, these systems are susceptible to the forest components 
arrangement, given their ability to penetrate the different depths of the canopy. 
Therefore, there are many types of research focusing on the estimating of the forest 
aboveground biomass (AGB) which is one of the critical measures of forest resources, 
using active remote sensing. This research investigates the potential of active remotely 
sensed data to estimate forest structural parameters and extract data information. 
Furthermore, this research focused on various methods used for AGB estimation with 
active remote sensing. 

 
 
 
 
 
 

1. Introduction  
 

Forest ecosystems are usually defined by some characteristics including composition, structure and function. 
Forest functional attributes refer to issues such as rates and types of processes like carbon sequestration. Forest 
composition is defined by all plant species found in a stand or relative indexes of biodiversity. Forest structure can 
be described as the physical and temporal distribution of vegetation and trees in a forest. Because forest structure 
affects the carbon cycle, nutrient cycling and the availability of niches for various species, it can affect biodiversity 
and a variety of ecosystem processes. Hence, in the management of forest ecosystems and in reducing greenhouse 
gas emissions from forest degradation and deforestation forest structure is an important factor [1, 2]. 

Forest structure contains a set of indicators including vertical and horizontal distribution of layers (including 
the shrubs, trees, and ground cover) in a forest, species distribution, age, size, or combinations of them [3]. The 
horizontal structure consists of the diameter size distribution of individual or group tree species. The vertical 
structure is the most complex of all vegetation parameters that involve its differentiation into layers between the 
canopy and the ground. The forest's vertical structure reflects the distribution of different species relative to each 
other and the spatial distribution of tree individuals in the forest, which concerns many disciplines [4]. It also has 
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important effects on the land surface process and constrains the accuracy of inference of forest characteristic 
parameters.  

From early forest classification mapping to forest parameters retrieval forestry remote sensing has been 
developed with the development of remote sensing technology [5]. Forest studies by remote sensing started with 
local-scale forest mapping from aerial photography in the first half of the twentieth century. Since the launch of 
the first satellite sensor in 1972, remote sensing has provided increasing information on the structure of forested 
ecosystems and enabled forest studies on a large and global scale. Also, with the development of LiDAR and 
Synthetic Aperture RADAR (SAR) technologies, advances in data analysis techniques and ecosystem modeling, 
their combination has provided an important role for remote sensing in forestry applications. Remote sensing has 
been used to identify, detect, classify, evaluate and measure many forest parameters such as tree height, Diameter 
at Breast Height (DBH), biomass, carbon, basal area, total leaf area, tree density and forest cover types [1, 3, 5]. 
Furthermore, to overcome some of the limitations of terrestrial surveys, combining field measurements with 
spaceborne and airborne remotely sensed data is used to obtain the necessary information on forest structure. 
Depending on the required level of detail of the output information and the specific application, various remote 
sensing data sources can be applied including optical data, LiDAR and RADAR data. Each of these data sources has 
proven to have advantages and potential for forestry applications. Active remote sensing systems like RADAR and 
LiDAR are considered the most valuable tools to provide volumetric forest and vertical structure measures 
because it is sensitive to the arrangement of forest components and it can penetrate to the different depths of the 
canopy. They have been successfully used to estimate Parameters of forest structure such as AGB [6-8], forest 
canopy height [2, 9, 10], leaf area index, canopy gap size and clumping index [5].  
 

2. An overview of RADAR systems 
 

RADAR systems are active sensors that provide their electromagnetic energy source. Active RADAR sensors, 
whether spaceborne or airborne, operate in an electromagnetic spectrum range of 1 mm–1 m. Moreover, Radar 
systems take advantage of the ability to penetrate through clouds and other media such as vegetation canopy due 
to the atmospheric permeability and much longer wavelengths in this region of the electromagnetic spectrum. 
Thus, these systems provide day/night, all-weather capability, and as well as sub-surface information dependent 
on wavelength. Microwave spectrum bands often used for remote sensing include P-band, L-band, S-band, C-band 
and X-band. RaDAR systems transmit energy to the ground and record the backscattered signals from the target 
to the radar antenna producing an image at microwave wavelengths. The backscatter of the RADAR signal is driven 
by the target properties and the system characteristics. The RADAR parameters include 1) frequency or 
wavelength; 2) Polarization refers to the orientation of the electrical field of the electromagnetic wave and 3) 
Incidence angle refers to the angle between the Earth’s surface plane and the direction of illumination of the 
RADAR. The target or surface parameters include 1) Dielectric properties; 2) Surface roughness; 3) Structure and 
orientation of objects on the surface. The RADAR signal is mainly sensitive to the structure of the surface. A surface 
will appear rough (bright) or smooth (dark), according to the scale of the variations of the surface concerning 
wavelength [11]. 

The depth of penetration of microwave radiation into vegetation depends on the frequency, dielectric 
properties, size, and geometry of the interacting vegetation parts. Therefore, microwave observations from 
different frequencies include information from different parts of the vegetation [12]. With increasing wavelength 
and decreasing frequency, the penetration capability of the transmitted signals increases. Considering forests 
(Figure 1), the RADAR signal in longer wavelengths such as L-band is backscattered at tree trunks, big branches 
and the ground, while the signal in shorter wavelengths such as X-band is backscattered at leaves and small 
branches [13]. Thus, the wavelength used determines the size of the scatterers that the sensor is sensitive to. As 
shown in Figure 1, X-band has a short wavelength with limited penetrating ability, while L-band and P-band have 
a longer wavelength signal with higher penetrating ability. C-band is considered a good compromise between X- 
and L-band. 

The invention of the SAR technique in the early 1950s was an important step in the development of RADAR 
remote sensing. SAR is a coherent side-looking RADAR system that uses the platform's flight path to electronically 
simulate an extremely large antenna or aperture and produces high-resolution images. Therefore, greatly 
increasing the RADAR resolution was the main advantage of the SAR technique. The ideal remote sensing 
application of RADAR needs an remote sensing system that provides precise and high-resolution, geo-referenced 
data about Earth’s surface [14]. Based on the combination of polarization modes and frequency bands used in data 
acquisition, SAR can be categorized as single polarization, multiple polarization, single frequency, and multiple 
frequencies [15]. 

The breakthrough in the development of active remote sensing occurred in 1970 with a technique called SAR 
interferometry (InSAR). The fundamental idea of InSAR is to combine scattering signals obtained at a different 
time (along-track interferometry) or from a different location (cross-track interferometry). While SAR images only 
provide the 2D coordinates of the scatterers, InSAR provides the measurement of the 3D coordinates of a target at 
the Earth's surface. In other words, a satellite SAR can observe the same area from slightly different look angles. 
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This can be done simultaneously from different orbits (with two RADARs mounted on the same platform) or at 
different times from the same orbit but utilizing repetitive acquisitions [11]. InSAR technique is widely applied in 
many fields like forest management, monitoring of surface deformation, polar surveys, monitoring glacial 
movement and ocean current, and hydrological studies [16]. In addition, it has been used in forestry to classify and 
estimate forest-related variables such as tree height, basal area, trunk volume and biomass. InSAR also is a 
potential technique to generate Digital Elevation Model (DEM), widely used in the geoscientific community, 
utilizing the phase component of complex RADAR signals. An appropriately equipped spaceborne InSAR system 
can be used to generate a highly accurate global DEM at a significantly lower cost and significantly less time than 
other systems. SRTM and TanDEM-X are examples of freely InSAR satellite missions that have acquired data over 
the world forests.  
 

 
Figure 1. Illustration of penetration in a forest canopy with RADAR frequency bands [11] 

 
3. An overview of LiDAR systems 
 

LiDAR is an active remote sensing system where ranges to the Earth are measured by light in the form of a 
pulsed laser. Reflected light energy from the object that backs to the LiDAR sensor is recorded.  The reflection time, 
taken for emitted light to travel to the ground and return, is measured. To measure the distance to an object, LiDAR 
instruments utilize the time-of-flight measurement principle. The 3D position of an object is described by the 
precise orientation of the distance measurements between the sensor and a reflective object, and the known 
sensor position. The LiDAR instrument principally consists of 1) A LiDAR sensor that scans the ground from side 
to side with a pulsed laser beam, 2) GPS that identifies the altitude and location of the light energy 3) Inertial 
measurement units (IMU) that tracks the orientation and speed of the platform in the sky and 4) Computer that 
records all of the height information while the LiDAR scans the surface. 

There are three types of LiDAR systems including terrestrial, airborne and spaceborne according to the 
platform. However, airborne and terrestrial LiDAR systems are only useful to small extents because of the high 
acquisition costs and limited coverage. In contrast, a spaceborne system is an ideal option for large and global-
scale studies [17]. LiDAR systems use near-infrared (NIR), visible, or ultraviolet to sense objects. These optical 
sensors typically use the NIR region of the electromagnetic spectrum to get the distance [15]. 

The advantage of LiDAR measurements is that they are relatively direct measurements of or as a function of 
height. This is an interesting proposition for remote sensing of vegetation cover as vegetation height is an 
important biophysical feature that provides information about observed vegetation. There are two major types of 
LiDAR systems used for forestry applications including full waveform and discrete return. They differ from each 
other in how they sample the three-dimensional structure of a canopy horizontally and vertically. Horizontal 
sampling is defined by the footprint area and the number of these footprints per unit area. Vertical sampling refers 
to the number of range samples recorded for each emitted pulse. 

Discrete return systems record discrete points for each peak location in the waveform curve. These individual 
or discrete points are known as returns. Discrete return systems can typically record a few, typically four, multiple 
returns from each pulse during flight. Contrarily, full waveform systems record the distribution of returned energy 
by sampling it at fixed time intervals. The number of recording intervals determines the amount of detail contained 
in a laser footprint. Full waveform systems are more complex to process, but can generally capture more 
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information compared to discrete return systems. For forested areas, the result is a waveform that represents the 
forest structure from the top of the canopy to the ground surface [18, 19]. 
 

 
Figure 2. Differences between full waveform and discrete return [19] 

 
One or many returns can be produced when a laser pulse hits the canopy of the forest. Because there are gaps 

in the forest canopy and the canopy is not a solid surface, the situation becomes more complicated when a laser 
pulse passes the canopy top and before reaching the ground it interacts with different parts of the canopy like the 
leaves, trunk and branches. This sequence of events can cause multiple returns to be recorded for a single laser 
pulse. Some systems also record the full waveform of the laser pulse’s reflected. It is assumed that the first returns 
come mainly from the canopy top and the last returns from the ground, which is significant to extract the terrain 
model [20]. 
 
4. Active remote sensing of forest structure 
 

LiDAR devices make it easy to collect detailed information that accurately captures the 3D structure of the 
earth's surface, while RADAR data allows for overcoming the common atmospheric and shadow effects that often 
occur in forested areas [1, 13]. LiDAR is a unique technology for characterizing forest structures at different scales. 
LiDAR data have been used to obtain high-resolution elevation data and to estimate vertical forest structure, AGB, 
canopy height and leaf area index [17]. Although LiDAR-derived height often underestimates the actual height due 
to system configuration and gaps in the canopy, the accuracy obtained is higher than that of other sensors [13]. 
LiDAR can provide both vertical and horizontal information with vertical and horizontal sampling. Sampling 
quality depends on the used type of LiDAR system and whether it is a full-waveform or discrete return system.  

There are two main approaches namely area-based methods and single tree-based methods for retrieving 
forest structural characteristics from LiDAR data. This method allows obtaining canopy height information via 
relatively coarse-resolution satellite or airborne LiDAR data. In area-based methods, the nonphysical distribution-
related attributes of LiDAR height measurements and statistical metrics are extracted from the laser point clouds. 
They are then used to estimate forest characteristics like basal area, mean tree height, volume and AGB at stand 
and plot level. Single tree-based methods focus on the recognition of individual trees. In this method, the tree 
attributes like the height of a tree, species information and crown dimensions are measured [1]. The resulting 
features can be used to derive other features like standing volume and AGB through various modeling techniques. 

SAR remote sensing is sensitive to the scatterer's geometry, structure, and dielectric properties. In addition, 
SAR signals can give better information about the vertical structure as they can penetrate deeper into the 
vegetation layers depending on the wavelength. Therefore, there are many studies on the extraction of vegetation 
height utilizing these data. For instance, SAR techniques such as InSAR or PolInSAR can estimate the canopy height 
of vegetation, which is an important variable for biomass estimation [13]. It has been shown to enhance biomass 
estimation of predicted vertical structure, including ground volume ratio, forest height, and volume and ground 
polarimetric scattering attributes. Space-borne sensors that obtain potential use data for forest structural mapping 
either generate data on sparse forest canopy samples or offer continuous mapping capabilities. The Geoscience 
Laser Altimeter System (GLAS) sensor on the lCESat (Ice, Cloud and land Elevation Satellite) is an example of the 
first category. Later, ICESat-2 launched in 2018 and has since collected continuous elevation data over the Earth’s 
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surface. Another category is RADAR sensors with interferometry capability. They have been utilized to create 
continuous height maps of the canopy surface or some intermediate level between the ground level and the canopy 
surface.  

Akay et al. [21] analyzed the structural characteristics of a forest, including canopy closure, crown diameter, 
vegetation density and mean tree height using airborne LiDAR data. The LiDAR-derived measurements of crown 
diameter and mean tree height were compared with field-based measurements. Their analysis revealed that the 
mean tree height, vegetation density, canopy closure and total crown width were 74.72 m, 26.05%, 71.15% and 
16.82 m, respectively. They also showed significant differences between field measurements and LiDAR-derived 
crown width and tree height values. The results of this study demonstrated that for relatively large study areas 
the structural features of forest areas can be determined more quickly, accurately and inexpensively using LiDAR-
based and GIS techniques. Brigot et al. [22] predicted forest vertical structure parameters using LiDAR and L-band 
PolInSAR data in a forest in Québec, Canada. They considered the influence of acquisition parameters like ground 
elevation, local surface slope, and interferometric baseline, along with parameters defining the coherence shape. 
They focused on three descriptors of canopy including canopy height profile class and canopy height and cover. 
They used a computer model to correlate PolInSAR features to canopy cover and canopy height; they then utilized 
a random forest model to a vertical distribution class. The vertical profile was divided into three separate classes 
with an accuracy of 66%. They showed that the predicted parameters from this study may improve estimates of 
AGB stock. Many studies have demonstrated the derivation of the vertical structure of forests using various 
methods and data sources, including LiDAR, SAR, InSAR, and a combination thereof [9, 13, 20, 23-25]. 
 
5. AGB estimation 
 

Generally, field-based measurements and remotely sensed techniques are used to estimate AGB. Field-based 
methods provide the most accurate AGB values but have limitations, such as being expensive, impractical, labour-
intensive, and time-consuming at a large scale [26]. In addition, tropical forests usually contain obstacles to field-
based tree height estimation, including tall canopies, dense understory vegetation, and closed-canopy conditions 
[27]. In these conditions, remote sensing has proven to be a more competent tool for monitoring and measuring 
forest biomass at various scales. Different remote sensing data types can be used for forest AGB estimation, 
including optical and active sensors data, i.e., LiDAR and SAR. Active remote sensing systems can penetrate the 
vegetation canopy. Hence, they have great potential for monitoring and assessment of AGB. 

In general, two general methods, i.e., reflectance-biomass models and forest height-biomass models, can be 
identified for mapping biomass using Earth observation satellites data. The reflectance biomass models concern 
the direct relationship between image reflection or backscattering and biomass. In the forest height-biomass 
models, forest height is utilized as the main predictor for estimating biomass. It is well known that the energy is 
reflected in optical sensors, while it is backscattered in RADAR sensors. The ratio of returned energy is determined 
by physical or geometry parameters like canopy structure, water contents, dielectric properties, and leaf pigment. 
Backscatter or reflectance varies depending on wavelength. The short wavelengths of optical sensors respond to 
small components of a canopy, like twigs and leaves. They cannot penetrate deep into the canopy. They generally 
carry a signal not on canopy height or biomass, but on the percent cover of canopies. Therefore, biomass estimation 
models based on reflected energy measured utilizing optical remote sensing tend to saturate at very low biomass 
levels [9]. 

Unlike optical sensors, active RADAR sensors are not affected by cloud cover or weather conditions and hence 
are useful tools for mapping forest biomass. In this point, backscatter amplitude information acquired using 
different RADAR bands or various polarizations is correlated with forest biomass because of the physical 
relationship between backscatter and the volumetric density of canopy elements. RADAR sensors with shorter 
wavelengths, such as X and C bands are sensitive to the canopy's small components. RADAR sensors with longer 
wavelengths such as L-band and P-band react to larger forest components, like stems and branches. According to 
the literature, RADAR backscatter saturates at certain biomass levels depending on the wavelength. Hence, due to 
weak sensitivity to higher levels of biomass, reflectance-biomass models are inadequate to cover the full range of 
biomass values [28]. 

Biomass also can be estimated from tree density and tree volume models. Since the woody density of trees is 
not highly variable among different species of a specific ecoregion, volume estimates can easily be converted to 
biomass. The volume of an individual tree can simply be considered as the product of tree height and tree DBH. 
Therefore, the biomass of a plot depends on the number of trees, their height and DBH. In closed canopies, there 
is a very close relationship between volume, canopy height, and biomass during a large part of the trees' growth 
stage [29]. Furthermore, Solberg et al. [30] estimated forest biomass with an RMSE value of 43% using remotely 
sensed height as the only predictor.  Therefore, theoretically measuring the forest canopy height provides a very 
useful biomass predictor. Forest height, as the major predictor of forest biomass, can be extracted to a certain 
extent using 3D remote sensing and then used to estimate biomass or wood volume. In terms of modeling methods 
used in AGB estimation, non-parametric modeling categories are frequently used. 
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5.1. Machine learning for estimating AGB 
 

Allometric models are widely used to build AGB models, but they cannot completely capture the complex 
heterogeneous landscapes in which multiple environmental variables impact the spatial distribution of AGB [31]. 
There are many different prediction models other than allometric models to measure AGB, including spatial 
statistical and machine learning (ML) models. With advances in the modeling of non-linear systems and the 
development of computer science techniques, ML methods have become widespread. ML is an artificial 
intelligence application trained by experience without any programming. ML approaches are powerful regression 
techniques to solve complex and non-linear problems. Furthermore, ML algorithms are not dependent on data 
distribution. Thus, it can seamlessly integrate data from different sources [32]. ML algorithms are an alternative 
to parametric methods in cases where the data is heterogeneous and does not show normality, such as in tropical 
forests [8]. Due to the complex relationships for AGB prediction, nonparametric ML approaches represent 
potentially helpful methods to predict AGB [33]. A wide variety of ML algorithms have been used to predict AGB 
already, including random forest (RF) [7, 26, 32], artificial neural network (ANN) [34, 35], maximum entropy 
(MaxEnt) [28, 33], Gaussian process (GP) [36], multivariate adaptive regression splines (MARS) [33, 37], K-nearest 
neighbor (KNN) [38, 39] and support vector machine (SVM) [31, 34, 40].  

Besides, selecting suitable variables from satellite data and physical variables is essential to model the AGB. 
Some studies have used various variables such as vegetation indices, texture indices, multispectral bands, LiDAR 
metrics, topographic variables or a combination of these to estimate AGB by ML algorithms. For instance, Ghosh 
and Behera [32], in a study conducted in a tropical forest in India, considered SAR, texture and vegetation indices 
to estimate AGB. Chen et al. [34] used texture characteristics, vegetation indices, multispectral bands and 
vegetation biophysical variables to estimate biomass through ML algorithms. They found that vegetation 
biophysical variables and texture characteristics were the most critical variables as predictors. Dang et al. [41] 
applied a combination of 11 spectral and texture variables to estimate the AGB of Yok Don National Park in 
Vietnam. In a study, Kappas [26] considered 52 variables, including vegetation indices, spectral bands, topography 
and textures, to predict forest AGB using the RF algorithm. They found that a combination of topography, 
vegetation indices and spectral variables present the highest prediction. In another study, multispectral 
reflectance, vegetation indices, vegetation biophysical, topographical indicators and texture variables were used 
as predictors for the AGB estimation. The results demonstrated that multispectral variables were primary and 
topographic variables were more important than texture features in complex AGB modeling [42].  LiDAR-derived 
metrics to estimate AGB in tropical forest areas by Marchesan et al. [8] and Rex et al. [38]. 

Mangla et al. [7] applied LiDAR and fully polarimetric SAR data to estimate forest AGB using the RF algorithm. 
Zhang et al. [33] evaluated eight ML algorithms for AGB estimation using tree cover data, canopy height, leaf area 
index, net primary production, and climatic and topographical data. They utilized five tree-based ensemble 
algorithms including RF, extremely randomized trees (ERT), gradient boosted regression tree (GBRT), stochastic 
gradient boosting (SGB), and categorical boosting (CatBoost); and used three nonensemble algorithms including 
multivariate adaptive regression splines (MARS), SVM, and ANN. The results of the study showed that tree-based 
models have better performances than nonensemble models and the CatBoost model outperformed the other 
models. Jiang et al. [43]  generated the forest canopy height map to estimate AGB in Northern China using a stacking 
algorithm by synergizing ICESat-2 with Sentinel-1. The algorithm consisted of SVM, multiple linear regression 
(MLR), RF, and k-nearest neighbor (KNN). They showed that stacking provides the best estimation accuracy for 
the forest canopy height and compared with SVM, MLR, RF, and kNN RMSE obtained by stacking algorithm 
decreased by 24.9%, 25.2%, 18.7%, and 22.8%, respectively. The most utilized nonparametric methods include 
ANN, RF, and SVM, among others and have been used in many studies to estimate biomass by integrating remote 
sensing and field data [35, 38, 41, 42, 44, 45]. 

RF, ANN, and SVM models are ensemble algorithms that can be utilized for both classification and regression 
problems. RF assembles decision trees on various subsets of the relevant dataset. Each tree depends on the values 
of a random vector sampled independently and with the same distribution. At each node of the tree, the split is 
determined by randomly choosing a set of predictor variables. In the regression trees, the significance of each node 
is determined by employing input data to evaluate which variable in that node ideally characterizes the remaining 
observations. The performance of the RF model is significantly affected by the number of trees [32]. ANN is made 
up of a layered structure, including an input layer, one or more hidden layers, and an output layer. Numerous 
hidden layers can be applied to build a more complex model to fit a challenging problem. The performance of the 
ANN model depends on connection weights between layers [42]. SVM is a kernel-based algorithm that transforms 
low-dimensional data into a higher-dimensional one utilizing a non-linear kernel function to minimize model 
complexity and training error. SVM models can achieve high accuracies, even when training data are small [33]. 
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6. Conclusion  
 

Active remote sensing is considered an important tool to provide volumetric and vertical structure forest 
measures because it is sensitive to the arrangement of forest components and it can penetrate to the different 
depths of the canopy. Structural information extraction and AGB estimation can be improved by combining RADAR 
and LiDAR data. Application in large areas is the main advantage of the integration of RADAR and LiDAR. In order 
to estimate forest AGB different methods of prediction can be used. Non-parametric models are most widely used 
to estimate forest AGB. Parametric models like multiple regression and linear regression, have been replaced by 
non-parametric models having a high ability to capture forest AGB’s heterogeneity. In comparison to parametric 
algorithms, nonparametric approaches are more flexible, create more complex models and represent potentially 
helpful methods to estimate AGB.  In addition, among the various non-parametric ML models, ANN, SVM, and RF 
models have the most used because of their highly accurate forest AGB estimating ability. 
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