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 Land Use Land Cover (LULC) detection is a crucial indicator of environmental change 
since it is associated with the climate, ecosystem procedures, land degradation, 
biodiversity and increased human actions. The objective of current study is to 
observe how main LULC class changed in Iraq from 1982 to 2019. Overall, 5259 
Landsat 4, 5 and 8 images were utilized for land classification. In the study, Random 
Forest classification method was performed in Google Earth Engine (GGE) platform. 
The research has established the accuracy assessment of overall accuracy and kappa 
coefficient of four periods are 95% or higher. The trend of classes demonstrated that 
built up class increased dramatically by 248.6%. In contrast, bare soil, which covers 
most territories of Iraq decreased by 8.4% (30,212 km2) from Period 1(1982-1989) 
to Period 4 (2010-2019). Likewise, vegetation class decreased by 20.2% (8,151 km2) 
during the same period.  

 

 
 
 
 
 
 
 

1. Introduction  
 

Land is a significant natural resource, which covers the solid feature of the surface. Due to economic growth, 
land resources are now widely exploited in terms of industrial development, urban growth, and the conversion of 
forests to agricultural lands [1]. In recent decades, the subject of land use/land cover (LULC) has been a significant 
aspect of environmental change and climate change studies. LULC has a major impact on global modification due 
to its associations with the climate, ecosystem procedures, land degradation, biodiversity and increased human 
action [2]. The physical condition and biotic constituent of the earth surface are called land cover [3]. While 
alterations of land cover by man are called land use [4]. Determination of changes in physical land cover over a 
series of time is called change detection, which is the most significant aspect of environment alteration [5]. 
Furthermore, rapid modifications in LULC have caused a drastic drop in green area [6]. 

LULC is growing and changing rapidly around the world and this poses a very high risk to parts of the ecosystem 
such as water bodies, soil, and temperature, especially in urban centers [4]. Human actions have principally 
reflected the land cover change dynamics [7-8]. Atmospheric rotation, vegetation protection, biogeochemical and 
energy cycle are multiple processes of the earth that have an impact on the land cover changes [9]. Evaluation of 
LULC is a significant criterion for effectively planning land reserve management. It is a key component for up-to-
date plans in protecting natural resources and observed changes in the environment which is assets to develop 
balance conservation strategies and enlargement pressure [10]. 

http://publish.mersin.edu.tr/index.php/arsej
mailto:azad.rasul@soran.edu.iq
mailto:gailan.faqe@soran.edu.iq
https://orcid.org/0000-0001-5141-0577
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Urbanization plays an important role in LULC transition through the substitution of natural land cover for 
habituated area and vegetation for economic reasons and facilities. Urbanization involves changes in land cover 
by structural engineering constraints such as highways, houses [4]. Urban populations are expanded faster than 
rural places, with high migration levels in metropolitan sites. Urban dwellers were projected to be approximately 
(3) billion people, and it is predicted to rise to 60% by 2030. 

The major driving forces for land use alteration are industrial development, urbanization, population growth 
and economic reforms [11]. LULC changes such as the abandonment of agricultural land are capable of being 
caused by an accelerated socio-economic alteration [12]. The researchers [13-14] demonstrate that political and 
socio-economic improvements influence urbanization. Their findings suggest that, in their case study, urban sites 
were key economic advancements. Political conflicts could have socio-economic, permanent or irrecoverable 
damage on cultivation. Thus, during the Iraq-Iran war of 1980-1988, the systematic desiccation of grassland led 
to devastating LCLU changes, biodiversity and human-induced operations. Not to mention that, in the period of 
2003-2015, urbanization processes remarkably increased due to the socio-economic and political factors. 

Currently, Google Earth Engine (GEE) is available as a powerful cloud computing platform that manages 
enormous volume of remote sensing data. It hosts a massive pool of remote sensing and geospatial datasets. In 
addition, a number of famous machine learning algorithms have been applied. Supervised classification is one of 
this filed. For instance, Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF) classifier are 
available in the platform. Previous classification studies have demonstrated that RF outperformed and is easier 
than other classifiers such as DT. In addition, RF is overtraining and has presented high accuracies in several 
studies [15-19]. 

Satellite images were widely utilized to study temporary LULC shifts. The application of remote sensing data 
has been implemented and accepted as an effective detection method for identifying LULC change [20]. Image 
satellites are capable of providing reliable and relevant data for decision-makers in different fields concerning 
vegetation and crop production [21]. Researchers [22-25] utilized satellite images to analysis, monitor and 
measure the patterns of LULC changes, principally in large areas that experience rapid alterations in land use.  
Remote sensing data is a potentially powerful tool for detecting changes in LULC at higher temporal resolutions, 
reduced coasts, synoptic views, repetitive coverage and gaining real-time and conventional methods [26]. 
Numerous studies have validated the successive application of several satellites such as MODIS, Aster, Landsat 
[27-33]. The Landsat TM/ETM/OLI data have been broadly utilized for many research as an accessible remotely 
sensed data [34-40]. Despite the significant conversion of LULC classes in Iraq during last four decades, not 
sufficient study was conducted in this field at the country scale. Mostly, LULC study in Iraq focused on specific 
cities and they relied on a short period of satellite data. Therefore, the objective of current research is to observe 
how main LULC class changed in Iraq from 1982 to 2019. 
 

2. Material and Method 
 
 

2.1. Study area 
 

Iraq is one of the Middle-Eastern countries located in southwestern Asia. It shares a boundary with Turkey 
from the north, Iran from the east, Syria and Jordan from the west, Saudi Arabia and Kuwait from the South (Figure 
1). The total area of Iraq is 438,320 km2 and the northern part of the study area are mountainous regions, which 
are about 3,550 m above the sea level. Whereas, the south part of the study area includes the desert area which 
covers around 40% of the total land of Iraq [41]. LULC is growing and changing rapidly around the world and this 
poses a very high risk to parts of the ecosystem such as water body, soil, and temperature, especially in urban 
centers [4]. 

Iraq has a unique climate; a Mediterranean climate combined with a subtropical semi-arid climate, especially 
in the north and northeastern parts. These areas are the first to experience precipitation in the November to April. 
However, December to February is precipitation season in the middle and south of the country. Mean annual 
precipitation is 216. The most rain is fall in the northeastern parts, which is around 1200 mm on average. 
Contrastingly, the southern parts receive 100 mm. July and August are the hottest months of summer, with 
temperatures reaching 43 °C in the shade. The temperature in winter days is 16 °C on average, dropping to around 
2°C during nighttime [42]. 

Iraq includes nineteen governorates. Farmland makes up around 26% of the total area of the country while the 
remaining areas are unused. Agricultural and other areas that are sited on the extreme northern border with 
Turkey and Iraq is covered by forests and woodlands [43]. 
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Figure 1. Location of the study area 

 

2.2. Data  
 

For the first period from 1982 to 1989, the study utilized 150 images of Landsat 4 (TM calibrated top-of-
atmosphere reflectance, orthorectified scenes only.) less than 25% of cloud covers. For second period 1990 to 
1999, we utilized 810 Landsat 5 (Landsat 5 TM calibrated top-of-atmosphere reflectance, orthorectified scenes 
only.) with less than 10% cloudy images. For third period from 2000 to 2009, 626 Landsat 5 images (less than 
10% cloudy) were utilized. For the last period from 2010 to 2019, we utilized 3669 Landsat 8 images (Landsat 8 
Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance) less than 10% cloudy. Overall, 5259 Landsat 
images were utilized for classification in this study. With Landsat 4 and 5, bands 1 to 7 were selected and for 
Landsat 8, bands 2–7 and 10–11 were utilized in the study. For each period, the mean value between selected 
images was calculated. Then, mean images of all periods clipped to shapefile of Iraq. 
 
 

2.3. LULC classes 
 

In the current study, we were attended to exemplify the fundamental LULC classes of a landscape conversion 
in Iraq. We recognized four main LULC classes of interest: Bare soil, Built-up, waterbody (e.g., rivers, lake, dam) 
and vegetation (e.g., grass, trees, cropland, agriculture and pasture). For LULC conversion that is associated with 
urban growth, conversion of vegetation and bare soil to build up is important. Furthermore, these classes are 
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possible to identify in scale of Landsat images. The study period was divided into four periods; P1 from 1982 to 
1989, P2 from 1990 to 1999, P3 from 2000 to 2009 and P4 from 2010 to 2019.   
 
2.4. Methodology 

 
GEE is utilized in this study for the images processing and performance of classification. The main steps are 

selecting images of Landsat within four periods; generating pixel-based mean value of each period, selecting 
samples of testing and validation points, producing classified maps, and post-classification to assess accuracy of 
classified maps. 
 
2.4.1. Random forest classification.  
 

In this research, the RF procedure was utilized for pixel-based LULC classifications because previous studies 
confirmed that the performance of RF is higher than other classifiers [44]. An RF is fundamentally an aggregate 
method that creates a multitude of decision trees and produces the mean prediction of the individual trees [45]. 
In our classification, 600 samples were selected for each period; 150 samples of each class. Samples are divided 
into two categories; 70% of samples utilized as training points and 30% of samples utilized as testing points for 
validation. In each period, we utilized an RF classifier with 10 decision trees. Classified images exported from GEE 
to Google Drive then downloaded. 
 
2.4.2. Accuracy assessment 
 

The accuracy of a classifier is the ability of method to properly classify a collection of samples. The data that 
utilized to experiment with the performance of the method should be different than the data utilized to train the 
classifier [46]. In case of inability of ground truth samples, for instance, samples of the land cover of previous 
decades, reference data is usually separated to training and experiment sets. Four evaluation classifier, overall 
accuracy (OA), Kappa coefficient, producer accuracy, and user accuracy were measured. Overall accuracy verifies 
the overall efficiency of the method that is calculated by dividing the total number of correctly considered samples 
by the total number of the testing samples. While, the Kappa coefficient demonstrates the degree of agreement 
between the validation data and the predicted values [47]. In this study, we utilized 30% of samples from 600 
samples as testing points for validation. For accuracy assessment, Kappa and overall accuracy were derived by 
using error Matrix of classified image of each period. Then classified images were utilized in GIS tools to create a 
comparative figure of LULC classes during the different periods in the country. 
 
 

3. Results and discussion 
 

3.1. Accuracy assessment 
 

Post classification comparison is utilized to demonstrate LULC changes between 5259 Landsat satellite images 
for different periods. LULC changes were extracted from Landsat images satellite for different periods. The 
accuracy assessment of overall accuracy and kappa coefficient are 98% and 97%, 96% and 95%, 98% and 97%, 
99% and 99% in the first, second, third and fourth period, respectively, as demonstrated in Table 1. The highest 
overall accuracy achieved was in 2010-2019 around 99%; moreover, the kappa coefficient for the same period 
was 99%. When kappa coefficient values are greater than 80% it represents strong agreement with the ground 
truth and this range is widely utilized as a minimum level of acceptable accuracy for LULC change classification 
[48].  
 

Table 1. Accuracy assessment 
Period Overall accuracy Overall Kappa coefficient 

1982-1989 0.98 0.97 

1990-1999 0.96 0.95 

2000-2009 0.98 0.97 

2010-2019 0.99 0.99 

 
 

3.2. Land use/Land cover detection analysis 
 

According to land cover classification (Figure 2), the bare soil class covers most of the territory of Iraq. Bare 
soil is distributed on the west and north-west of the study area. The trend of bare soil started to decrease from 
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1982 to 2019. The northern part of the study area was dominated by vegetation, while in the central and south of 
the study area are a combination of dense vegetation, built-up and water body.  

Figure 2 and Table 2 illustrate the changes in LULC proportions over the examined periods. Bare soil area was 
changed from 17,584, 41,588, 50,753 and 61,296 Km2 in the P1, P2, P3, and P4, respectively. From P1 to P4 it 
decreased by 8.4%. The trend observed the built-up class increased dramatically by 248.6% from 17,584 km2 in 
1982 to 61,296 km2 in 2019. While, the trends observed in vegetation proportion follow the opposite direction; 
vegetation increased from 40,414 in P1 to 69,098 km2 in P2, while the trends observed decreased to 37,496 km2 

in P3 and 32,264 km2 in P4. Overall, from P1 to P2 vegetation class decreased by 20.2%. Waterbody coverage 
decreased from the first three decades from 9,596 to 3,983 km2, however, the trend was increased through the 
last decade to arrive 7,111 km2. The water bodies in the study area include rivers, lakes and irrigation water.  
 

 
Figure 2. Land Use Land Cover Change. a: period 1982-1989, b: 1990-1999, c: 2000-2009, d: 2010-2019 

 
Table 2. LULC classes change from period 1982_1989 to 2010_2019  

P1: 1982-1989 P2: 1990-1999 P3: 2000-2009 P4: 2010-2019 Changes from 
P1 and P4 

Classes % Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

% Area 
(Km2) 

Built-up 4.1 17,584 9.6 41,588 11.8 50,753 14.2 61,296 248.6 43,712 

Water body 2.2 9,596 1.3 5,682 0.9 3,983 1.6 7,111 -25.9 -2,485 

Bare-soil 84.2 360,977 73.0 315,067 78.6 339,202 76.7 330,765 -8.4 -30,212 

Vegetation 9.4 40,414 16.0 69,098 8.7 37,496 7.5 32,264 -20.2 -8,151 

 
 

The geographical distribution of different LULC classes was demonstrated in the four periods. The ratio 
between areas of land cover was utilized at different decades to illustrate land cover changes as demonstrated in 
Table 2. The main conversion to Built-up area occurred from Vegetation and Bare soil classes. From P1, P2, P3 and 
P4 the Built-up increased dramatically from 4.1, 9.6, and 11.8 to 14.2% respectively (Figure 3). This conversion is 
natural when we making a comparison between the populations of Iraq from 1984 to 2019. The population of Iraq 
increased 172.37% in the same period based on Worldometer's elaboration of the latest United Nations data. This 
increase in the population has already caused urban growth. Most bare soil in Iraq is a desert area. The conversion 
of bare soil areas into a built-up area has been reduced this class over time. In particular, Bare soil class decreased 
from 84.2 in P1 to 76.7% in P4.     
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Figure 3. Land use land cover change in Iraq from 1982 to 2019 (%) 

 

 
Figure 4. Trend of precipitation in Iraq from 1981 to 2019 based on Climate Hazards Group Infrared 

Precipitation with Station Data [49] 
 

Vegetation cover was observed more density in the north part of the study area. The vegetation of the study 
area consists of agriculture, forest, pasture and grass areas. Most distribution of vegetation depends on the fed-
rain. Therefore, there is a relationship between annual precipitation and the increase or decrease amount of 
vegetation in the study area. Figure 4 and Table 3 illustrate the trend of rainfall in the study area from 1981 to 
2019. The trend of precipitation increased from P1 to P2. This change in the trend of rainfall effect on the amount 
of vegetation in the same period. Vegetation cover was increased from 9.4 to 16.0% from P1 to P2 which is 
associated with the same period of rainfall increasing, while vegetation cover was decreased by 8.7 to 7.5% from 
P3 to P4. Trend rainfall changes effect directly on the amount of vegetation distribution. There are several factors 
that additionally impact on vegetation such as wildfire and many political and economic crises that assist to land 
cover degradation such as Iraq and Iran war from 1980 to 1988, the economic blockade against Iraq from 1991 to 
2003, poor state administration. Especially, in central and southern of the country has been leading to breakdown 
land cover management after 2003. 
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Table 3. Precipitation in Iraq from 1981 to 2019 based on climate hazards group infrared precipitation with 
station data 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

Year Precipitation 
(mm) 

1981 222 1991 182 2001 224 2011 175 
1982 235 1992 172 2002 201 2012 198 
1983 181 1993 225 2003 204 2013 214 
1984 190 1994 191 2004 208 2014 195 
1985 205 1995 188 2005 194 2015 190 
1986 211 1996 201 2006 256 2016 213 
1987 191 1997 182 2007 182 2017 197 
1988 253 1998 203 2008 143 2018 342 
1989 145 1999 204 2009 194 2019 271 
1990 156 2000 193 2010 182   

 

4. Conclusion  
 

Investigation four decades of LULC change in Iraq demonstrated how classes converted besides population 
growth and environmental changes. Nowadays, LULC detection is a crucial indicator of environmental change 
because it is associated with the climate, ecosystem procedures, land degradation, biodiversity and increased 
human actions. The objective of current research is to observe how the main LULC class changed in Iraq from 1982 
to 2019. Overall, in the study, 5259 Landsat 4, 5 and 8 images were utilized for land classification. We performed 
Random Forest classifier method in Google Earth Engine (GGE) platform. 

Our result achieved 95% and higher accuracy assessment of both overall accuracy and kappa coefficient of four 
periods. The trend of classes demonstrates that bare soil which covers most territories of Iraq decreased by 8.4% 
(30,212 km2) from 1982-1989 to 2010-2019. Moreover, vegetation class decreased by 20.2% (8,151 km2) during 
the same period. In contrast, built up class increased dramatically by 248.6% (43,712 km2). In the future, more 
research should be done to effectively treat the negative side effects of conversion vegetation and bare soil classes 
to build up areas in Iraq. 
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 Polarimetric Synthetic Aperture Radar (PolSAR) images are considered as an important 
data source for the crop mapping and monitoring especially for the time-critical 
agricultural applications. The objective of this paper is to evaluate the potential of a novel 
ensemble learning algorithm, Regularized Greedy Forest (RGF), for crop classification 
from multi-temporal quad-pol PolSAR data. For the classification of crops (maize, potato, 
wheat, sunflower, and alfalfa) in the study site, the polarimetric features of Cloude–
Pottier decomposition (a.k.a H/A/α decomposition) were used as the input data. The 
performance of RGF was compared to Random Forests (RF) and Support Vector 
Machines (SVM) in terms of overall accuracy and Kappa values. Our experimental results 
demonstrated that RGF can yield higher accuracy (with an overall accuracy of 0.78) than 
RF and SVM for crop classification using PolSAR images. Moreover, it can be concluded 
that polarimetric features of Cloude–Pottier decomposition are of efficient for the 
discrimination of crops using multi-temporal PolSAR data. 

 
 
 
 
 
 

1. Introduction  
 

Crop classification is one of the vital and important applications in remote sensing since this information could 
be used as an input data for crop yield estimation, agricultural planning as well as spatio-temporal monitoring of 
crops.  Spaceborne SAR images are usually preferred for the time-critical agricultural applications because SAR 
signals are sensitive to the crop structure and dielectric properties. In particular, PolSAR images provide more 
detailed information for agronomic characteristics as they record the complete characteristics of the scattering in 
each polarization for the natural targets [1-4]. 

Polarimetric target decompositions (or target decompositions) are used for easier understanding and simpler 
interpretation of the complex scattering characteristics of natural and man-made targets [3, 5-7]. In this 
experimental research, we implemented the Cloude–Pottier decomposition (a.k.a. H/A/α decomposition) that is a 
type of eigenvector-based decomposition.  

Over the last two decades, a wealth of ensemble learning algorithms has been utilized in remote sensing such 
as random forests [8], extremely randomized trees [9-10] (a.k.a. extra trees), canonical correlation forest [11-12], 
extreme gradient boosting (XgBoost) [13], Light Gradient Boosting Machine (LightGBM) [14] and deep forest [15]. 
We chose Regularized Greedy Forest (RGF) in this experimental research since the regularized greedy forest 
algorithm has not been fully explored yet for the crop classification using multi-temporal PolSAR data. 
Furthermore, we compared the classification performance of RGF with the two popular and well-established 
machine learning algorithms in remote sensing, namely RF and SVM. 

http://publish.mersin.edu.tr/index.php/arsej
mailto:mustuner@artvin.edu.tr
mailto:fbalik@yildiz.edu.tr
https://orcid.org/0000-0003-0553-2682
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In this paper, we consider the following questions. (1) Can RGF yield higher accuracy than RF and SVM for 
PolSAR image classification in our experimental research? (2) Are polarimetric features of Cloude–Pottier 
decomposition sufficient for crop discrimination from multi-temporal PolSAR data? The major contributions of 
our experimental study can be shortly summarized as follows. 

(1) We investigated the regularized greedy forest algorithm for the crop classification using the polarimetric 
features from Cloude–Pottier decomposition. 

(2) The performance of RGF in comparison to RF and SVM was evaluated for crop classification from multi-
temporal PolSAR images. 

The rest of the paper is organized as follows. Section 2 introduces the study area and data. PolSAR data 
processing and classification models are summarized in Section 3. The details of the experimental results and their 
discussion are presented in Section 4. And following in Section 5, the final conclusions and some important 
remarks are provided. 
 

2. Study area and data 
 

In this section, the study area site and the details of the multi-temporal PolSAR dataset will be presented. 
 

2.1. Study area 
 

The study site corresponds to the agricultural fields close the province of Konya, Turkey, illustrated in Figure 
1. The region has a flat topography and favorable climate conditions for precision farming. The main crop types 
covering the study site are alfalfa, maize, potato, summer wheat and sunflower. In-situ data was collected 
simultaneously at the acquisition dates of the PolSAR images. 
 

 
Figure 1. Study area [14] 

 

2.2. Multi-temporal PolSAR dataset  
 

The Multi-temporal quad-polarimetric RADARSAT-2 data (single look complex with fine quad-polarization 
acquisition mode) was used in our experimental study. The data was acquired for the key dates of the crops as 
follows: June 13, July 7, July 31 and August 24 of 2016. The data specifications are presented in Table 1. 
 

Table 1. PolSAR Data Specifications 

Specifications Description 

Wavelength C band - 5.6 cm 

Resolution (in m) 4.7 x 5.1 (rg x az) 

Incidence angle 400 

Pass direction Descending 

Acquisition type Fine quad pol 

Polarization Quad polarimetric 

Product type Single look complex 
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3. Methods 
 

3.1. PolSAR data processing 
 

Some pre-processing steps for PolSAR data processing are required in order to extract the relevant and proper 
polarimetric features from target decompositions. In our experimental study, the data pre-processing includes the 
following steps: (1) data calibration; (2) matrix generation (from coherency matrix); (3) extraction of polarimetric 
features from Cloude-Pottier decomposition; and (4) orthorectification. All pre-processing steps were 
implemented using open-source SNAP (The Sentinel Application Platform) v6.0 toolbox, provided by European 
Space Agency. The data processing steps were illustrated in Figure 2.  
 

 
Figure 2. PolSAR Data Processing and Classification  

 

The Cloude-Pottier decomposition (also known as H/A/α decomposition) is an eigenvector-based 
decomposition of coherency matrix and separates the total scattering mechanism into three polarimetric features 
(averaged parameters) which are entropy (H), anisotropy (A) and alpha angle (α). Each feature type provides 
different information regarding the scattering mechanism such as entropy measures the randomness level of 
scattering and the alpha angle defines the scattering type of targets (i.e., surface, double-bounce and volume 
scattering). And the latter parameter, anisotropy, is helpful to demonstrate the differences between the scattering 
mechanisms [4-5,14,16]. 
 
 
3.2. Image classification  
 

In this experimental study, three different machine learning algorithms were implemented for the crop 
classification from multi-temporal C-band PolSAR images. The details for training and testing samples were 
provided in Table 2. The brief summary of the classification models is provided in the following paragraphs.  
 

Table 2. Ground Truth Information 

Class Training Testing Total 

Alfalfa 1918 3542 5460 

Maize 5581 14217 19798 

Potato 2275 10604 12879 

Sunflower 3729 8915 12644 

Wheat 3524 6338 9862 
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Regularized Greedy Forest (RGF) is a type of tree-based ensemble learning algorithm, developed by [17]. RGF 
builds decision forests via fully-corrective regularized greedy search by using the underlying forest structure. 
Fully-corrective regularized greedy search algorithm recursively re-optimizes the coefficients of all decision rules. 
The novelty of this method is that it combines two ideas: (1) tree-structured regularization into the learning 
formulation and (2) fully-corrective regularized greedy algorithm. The classification was performed by using the 
python wrapper of RGF [18]. 

The Random Forest is one the most frequently used ensemble learning algorithms in remote sensing image 
classification. RF creates a set of decision trees to make a prediction and the final output of the classifier is 
determined by the majority voting of the trees [19]. Support Vector Machines are one of the popular kernel-based 
learning algorithms and based on statistical learning theory. SVM use the kernels to map the data into higher 
dimensional space for the linear separation of classes. Radial Basis Function kernel was used in our experiment 
[20-21]. SVM and RF classifications were performed using the open-source Scikit-learn (v 0.19) module in Python 
v3.6.4 [22]. 
 
4. Experimental results and discussion 
 

The classification performance of Regularized Greedy Forest in comparison to RF and SVM was analyzed in our 
experimental study for the classification of crops from multi-temporal PolSAR data. The overall accuracy of the 
classified images was derived from the error matrix and the comparison of the methods was assessed in terms of 
overall accuracy and kappa coefficients. Table 3 presents the overall accuracies and kappa coefficients for the 
classification algorithms. The highest classification accuracy (overall accuracy of 78.65% and kappa coefficient of 
0.72) was produced with RGF while lowest classification accuracy (overall accuracy of 75.08% and kappa 
coefficient of 0.67) was obtained by SVM. The classified images for each method were presented in Figure 3. 
 

Table 3. Classification Accuracies 

Methods Overall Accuracy (%) Kappa 

SVM 75.08 0.67 

RF 76.52 0.69 

RGF 78.65 0.72 

 

 
Figure 3. Classified Images 
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Individual class accuracies were assessed based on F1-score which is the harmonic mean of the user accuracy 
and producer accuracy values. Table 4 presents the individual class accuracies (based on F1-score) for each 
classification method. 

 
Table 4. Individual class accuracies (F1-score) 

Methods RGF RF SVM 

Alfalfa 0.26 0.26 0.28 

Maize 0.76 0.74 0.72 

Potato 0.70 0.63 0.66 

Sunflower 0.99 0.99 0.97 

Wheat 0.95 0.95 0.93 

 
Sunflower is the most accurate classified class (0.99) while alfalfa is the least accurate classified class (0.26) in 

which F1-score could not reach up to the 0.30. SVM predicted the alfalfa class more accurate than other methods 
though it yielded the lowest classification accuracy.  Moreover, SVM obtained higher F1-score than RF for potato 
and alfalfa classes. Wheat is the second most accurate predicted class in our experimental study where it was 
predicted above the F-1 score values of 0.90. 
 
 

5. Conclusion  
 

This research investigated the performance of a novel ensemble learning algorithm, RGF, in comparison to RF 
and SVM for the crop classification from multi-temporal PolSAR images. The Cloude-Pottier decomposition was 
implemented for the extraction of the polarimetric features. Our experimental results demonstrated the following 
conclusions: 1) RGF can yield higher classification accuracy than RF and SVM for the classification of multi-
temporal PolSAR images 2) the polarimetric parameters derived from Cloude-Pottier decomposition are suitable 
for the crop classification. Our future research will focus on the extensive analysis of the polarimetric features 
derived from incoherent polarimetric decompositions for the crop classification. 
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 Automatic vehicle detection, one of the study areas in Remote Sensing facilities, has 
become widely used on several issues such as transportation, disaster management, 
highway management, parking lot management and real-time vehicle detection in smart 
cities. In recent years, deep learning methods have been widely preferred in vehicle 
detection. Although this method has advantages such as high accuracy and speed of 
detection, some problems such as not detecting vehicles, double detection and class 
confusion in detection from digital images caused by vapor and shadow in adverse 
weather conditions (i.e., rain, fog, sunlight) have been raised. Thus, vehicle detection is 
still a significant issue that should be studied. In this study, versions of You Only Look 
Once (YOLO), one of the deep learning (DL) architectures, have been investigated in 
terms of performance assessments of vehicle detection in parking lots. To perform the 
analysis, Unmanned Aerial Vehicle (UAV)-based images collected from Yildiz Technical 
University, Campus of Davutpasa (dated 2018) were used. The labeling process was 
performed for three classes (car, bus, and minibus) using the Visual Object Tagging Tool 
(VoTT). The labeled dataset has been trained via transfer learning in YOLOv4-CSP, 
YOLOv4-tiny, YOLOv4-P5, YOLOv4-P6, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, 
YOLOv5x architectures. The weights of YOLO versions have been implemented to the 
parking lots and results have been compared. To assess the performance of YOLO-based 
vehicle detection, mAP and F1-Score values were computed. 

 

 
 
 
 
 
 
 
 

1. Introduction  
 

Recently, the integration of remote sensing, photogrammetry and deep learning algorithms have obtained fast, 
real-time, and highly-accurate results. It is obvious that it has opened a new era in various disciplines with 
technological developments in the fields of deep learning and computer vision. Several object detection studies 
have been carried out in urban areas. Automatic vehicle detection has become one of the most important topics in 
the management of highways and parking lots in urban areas, considering the rapidly increasing population and 
the transportation vehicles that participate in traffic jams. 

Cheng et al. [1] carried out a pixel-based classification study for vehicle detection by applying a color filter that 
separates the colors of vehicles and other objects. The vehicles were identified using the Canny edge detector and 
classified by Dynamic Bayesian Network (DBN). Chen et al. [2] tackled whether conventional methods are 
insufficient or not when there is a complex background. They decided to use Deep Neural Networks (DNN) because 
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of its structure that can learn rich features from the training data. Hence, they presented the Hybrid DNN (HDNN) 
model by making changes in the pooling layer for the model to detect data at different scales on the DNN. De 
Almeida et al. [3] introduced a dataset on parking lots and aimed to detect the empty and occupied areas in the 
parking lot by Support Vector Machines (SVM). In experiments, where the same data was used for both training 
and testing, accuracy rates of over 99% were achieved. However, when working with different data, the best result 
was obtained about 89%. In Tan [4], the vehicle dataset consisting of 2000 images of different brands and models 
was trained with Faster-R-CNN-ResNet 50, Faster-RCNN-ResNet 101, R-FCN-ResNet 101 and SSD-MobileNet using 
transfer learning. When the results were examined, the Faster RCNN-ResNet 50 model was the most successful 
with 94%. 

Since object detection is a critical part in Automatic Driving Systems (ADS) and Driver Assistance Systems 
(DAS), current real-time detection models for small vehicle objects suffer from low sensitivity and poor 
performance. The detection speed of the YOLO algorithm has been of great benefit in the development of automatic 
driving systems [5-6]. Bui et al. [7] used object detection and tracking models such as YOLO and DeepSort to 
analyze traffic in complex areas (e.g., intersections). To improve the vehicle counting problem, they propose a zone 
monitoring approach that can work well with a variety of scenarios, especially in areas with complex movements. 
The proposed model has been evaluated in the CVPR AI City Challenge 2020 dataset. Accordingly, the method 
achieved 85% accuracy. Han et al. [8] proposed a new real-time object detection model named YOLOv2, which is 
optimized based on the YOLOv2 deep learning framework, to be applied to small vehicle objects. In the proposed 
model, a new structure is introduced to strengthen the feature extraction capability of the network by adding 
convolution layers to YOLOv2. 94% accuracy was achieved in the model, whose effectiveness was investigated 
using the open-source dataset KITTI. Wang et al. [9] tested Faster-RCNN, R-FCN, SSD, RetinaNet, and YOLOv3 
models using the KITTI dataset. According to the results, R-CNN-type models that work locally in two stages give 
more accurate results, while the speed of models such as YOLO and SSD. 

In this study, the latest versions of YOLO namely YOLOv4 and YOLOv5 were utilized for performance analysis 
of vehicle detection. Target object classes were aimed as follows: car, minibus and bus. The properties of the study 
area and the dataset obtained by the UAV system are presented in the next section, followed by an explanation of 
the methodology adopted. The results of the experiment are reported along with an accuracy assessment of the 
automatic vehicle detection results with the versions of YOLO deep learning analyses, in the Results and Discussion 
section, and the conclusion is given in the last section. 
 

2. Material and Method 
 

You Only Look Once (YOLO), which is a deep learning architecture, utilized for the automatic vehicle detection 
analysis with the data obtained by UAV. The workflow of the proposed methodology is given in Figure 1. In the 
first stage of automatic on-ground vehicle detection with YOLO architecture, data preparation, i.e., labeling, data 
augmentation, training, validation and test data split, was made. Model training with transfer learning was used 
for different versions of YOLO so-called YOLOv4-CSP, YOLOv4-tiny, YOLOv4-P5, YOLOv4-P6, YOLOv5s, YOLOv5l, 
YOLOv5m, YOLOv5n and YOLOv5x. The performance analysis of target classes (car, minibus and bus) was 
evaluated with nine YOLO versions and then accuracy and performance analyses were performed. In this study, 
Roboflow software was used for data augmentation processes using UAV images. The labeling processes of the 
target classes were created using Visual Object Tagging Tool (VoTT) software. Mean Average Precision (mAP), F1-
Score, precision and recall parameters were computed for performance analysis of YOLO versions for vehicle 
detection.  
 
2.1. Study area and dataset 
 

In this study, parking lots located at Davutpasa Campus of Yildiz Technical University in Istanbul, Turkey were 
selected as regions of interest (RoI) (Figure 2). The aerial images were collected with the UAV system in 2018. 
Figure 3 shows samples from RoI including parking lots. Totally 94 images were obtained with a size of 5472 * 
3648 pixels and a resolution of 72 dpi. 
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Figure 1. Workflow of vehicle detection 

 

 

 
Figure 2. Study area 
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Figure 3. Some samples of parking lots from RoI 

 
2.2. Data preparation 
 

Data preparation phase was carried out in 3 main stages as (1) labeling, (2) data augmentation, and (3) training, 
validation and test data split. 
 
 

2.2.1. Labelling  
 

Data labeling is a process that transforms data into a descriptive format for artificial intelligence (AI) 
applications. Generating the desired output in AI-based models is highly dependent on accurate and well-labeled 
data. Labeled data should be reliable, accurate and consistent. Features that do not belong to any target class 
should not be labeled. The required number of labels should be made in the data and the data for each label should 
be sufficiently various.  
 
2.2.2. Data augmentation  

 
Data augmentation is a technique, which is commonly used to train large neural networks by increasing the 

diversity of the data without collecting new samples. This transformation technic is closely related to digital image 
processing in data analysis, which used to augment images in deep learning. In most of the studies, the data 
augmentation techniques are applied to the dataset to contribute to the representative ability of the dataset. In 
this study we utilized the fundamental three methods of data augmentation as follows; brightness analysis, shear 
and rotation. Brightness analysis is used to change the brightness of the image. After this technique the result 
image becomes darker or lighter than the original one. The process of shear transformation, which is to fix the one 
axis and stretch the image at a certain angle known as the shear angle. The image is rotated randomly by an angle 
in the range of (+) value to (-) value in the rotation process. The samples of brightness, shear and rotation images 
from study were given in Figure 4. 
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Figure 4. The samples of brightness, shear and rotation images  

 
2.2.3. Training, validation and test data  

 

One of the important issues of machine learning is the generalization of the developed model. Generalization is 
an indicator representing the performance and fitness of the model for new data. Data are separated into training, 
validation and test dataset to measure generalization. Training, validation and test data have a strong relation on 
fitness of model (Figure 5). Training dataset is a sample of data used to fit the model during the learning process. 
Training data determines the parameters of the model. The validation dataset is used to provide an unbiased 
evaluation of a model fit on the training dataset while tuning the hyperparameter. The evaluation process of the 
validation data is to determine the hyperparameter values for the model. Test data is the part of the dataset used 
to assess the final fit of the model performance.  

 
Figure 5. Splitting the train, validation and test dataset 

 
2.3. Model Training with Transfer Learning for YOLO Architectures 
 
2.3.1 Transfer learning 
  

Re-training a model on a new task that was pre-trained for another task is known as transfer learning. In order 
to train complex models, the dataset must be large enough and representative of the real situation. Generally, most 
remote sensing-based transfer learning works are focused on updating the weights of a deep learning solution 
from another context to the current task based on available training data [10]. However, previously trained dataset 
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is often used to take advantage of the time and expert knowledge. Transfer learning is valuable for data science 
because it reduces the need for large amounts of data. Using transfer learning instead of end-to-end learning 
provides better performance with less data and less training time. Hence, the use of MS COCO dataset, which 
includes 2.5 million labeled samples of 91 objects in 328,000 images was preferred. In addition, selection of this 
dataset’s pre-trained models is appropriate since it covers car, bus, and minibus classes. 
 
 2.3.2. YOLO Architectures 
  

In this study, the latest versions of YOLO namely YOLOv4 and YOLOv5 were used for performance analysis of 
vehicle detection. The YOLOv4 model was developed with Cross Stage Partial (CSP) structure [11]. This model is 
configured as backbone, neck and head. Backbone is the layer of the feature extraction process, which is added as 
a middle layer to find more features while estimating objects. YOLOv4 uses Spatial Attention Module (SAM), Path 
Aggregation Network (PAN) and spatial pyramid pooling (SPP) instead of Feature Pyramid Network (FPN). At 
head, there are bounding boxes and the estimated boxes of each class. In literature, there are versions of YOLOv4 
namely YOLOv4-CSP, YOLOv4-tiny, YOLOv4-P5, YOLOv4-P6 and YOLOv4-P7. The Scaled YOLOv4 model was 
developed by [12], which has the YOLOv4 object detection neural network based on the CSP approach scaled up 
and down (Figure 6). This model is adaptable to all network structures while maintaining optimum speed and 
accuracy. The CSP layer, which was added to the YOLO architecture, has a simple structure and offers very efficient 
results. In this structure, half of the data produces semantic information as it moves along the line, while the other 
half is added to the model later, preserving both spatial information and some properties. Scaled YOLOv4 changes 
not only the depth, width, resolution of the mesh, but also its structure. After the scaled YOLOv4 model, the 
YOLOv4-tiny model was developed for low-capacity GPUs. The YOLOv4-tiny model has different considerations 
from the scaled YOLOv4 model because different constraints such as memory bandwidth and memory access are 
considered in it. The backbone structure of the YOLOv4-tiny model uses OSANet, which offers favorable 
computational complexity at small depth. After the YOLOv4-tiny model, the YOLOv4-Large model was developed 
for high-capacity GPUs and scaled from P5 to P7. In this model, as the scale increases along with the depth and 
width of the model, the complexity of the structure also increases. The depth scale is given as 1, 3, 15, 15, 7, 7 and 
7 from small model to large model at each stage, respectively.  

The YOLOv5 model was introduced by Glenn Jocher after the release of YOLOv4. The generalized structure of 
the YOLOv5 model is given in Figure 7. In this model, as in the YOLO v4 model, CSPNet backbone and PANet neck 
are used. Likewise, the same structure of the model in YOLOv4 is used in the head part of YOLOv5. The difference 
between YOLOv5 versions (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) is the scaling factors of the 
width and depth of the mesh (Figure 8). In Table 1, the number of layers, parameter numbers and performance 
information about the versions are given. 
 

 
Figure 6. Scaled YOLOv4 layer architecture [12] 
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Figure 7. The generalized structure of YOLOv5 model [13]  

 

 
 

Figure 8. Scales of YOLOv5 

Table 1. Specifications of YOLOv5 models 
Model Number of Layers Number of Parameters FLOPs 
YOLOv5n 270 1.767.976 4.2 
YOLOv5s 270 7.027.720 15.9 
YOLOv5m 369 20.879.400 48.1 
YOLOv5l 468 46.149.064 108.0 
YOLOv5x 567 86.231.272 204.2 

 

2.4. Accuracy and performance analysis 
 

To assess the performance of YOLO-based vehicle detection, mAP and F1-Score values were computed. Actual 
annotations were compared with predictions according to confusion matrix (Table 2). 
 

Table 2. Confusion Matrix 

Confusion Matrix 
Actual 

Positive Negative 

Predicted 
Positive TP (True Positive) FP (False Positive) 
Negative FN (False Negative) TN (True Negative) 

 

Moreover, some performance metrics are given below in (Eq.1-5); 
 

Precision =
TP

TP + FP
 (1) 

  

Recall =
TP

TP + FN
 (2) 

  

F1 − Score =
2

(
1

Precision
) + (

1
Recall

)
 (3) 

  

AP = ∑ [Recall(k) − Recall(k + 1)] ∗ Precision(k)

k=n−1

k=0

 (4) 

  

mAP =
1

n
∑APk

k=n

k=1

 (5) 
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where, AP and mAP are the average and mean average precisions; n is the number of classes and APk is the AP 
value of the related class (k). 
 
 

3. Results  
 
 

3.1. Data preparation 
 

Before the data preparation process, pre-processes were applied to ensure the availability and suitability of 
the aerial images of the study area with the YOLO architecture and to increase the accuracy. At this stage, the 
images were cropped as the dimensions of 2048 x 2048 pixels. In the data preparation process, the images were 
labeled in three classes: car, bus and minibus, which were vehicles on campus parking lots. There are 1223 labels 
of car, 122 labels of minibus and 54 labels of bus in the dataset. After this step, data augmentation was performed, 
followed by the dataset split process utilized as 75%, 15%, and 10% of training, validation and test, respectively. 
The values of ±10 brightness, 15-degree vertical shear, and ±15, 25, and 90-degree rotation were applied in data 
augmentation. 
 
3.2 YOLO model training  
 

In the training process, the pre-trained weights of the MS COCO dataset were accepted as the initial weights 
and imported into YOLO architectures. The hyperparameters of the YOLOv4-CSP, YOLOv4-tiny, YOLOv4-P5, 
YOLOv4-P6, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x models for training were given in Table 3.  
 

Table 3. The hyperparameter values used in training 
Hyperparameters Values 
Batch Size 16 
Input Size 416 x 416 

Momentum 
Momentum: 0.937 
Initial Learning Size: 0.01 

Epoch Size 200 

Activation Function 
YOLOv4: Mish;  
YOLOv5:  Leaky ReLU 

Optimization Algorithm ADAM 

 
 
3.3 Accuracy Analysis of Model Training 
 

In this study, nine different YOLO versions were trained and Table 4 includes the results of the accuracy 
analyses of trained models. Analyses were performed by comparing metrics computed between actuals and 
predictions. 
 

Table 4. Training metrics of trained models (fps refers to frame per second) 
MODEL Precision Recall F1-Score mAP fps 

YOLOv4-CSP 0.61 0.78 0.68 0.76 11 

YOLOv4-tiny 0.86 0.91 0.89 0.75 63 

YOLOv4-P5 0.47 0.86 0.61 0.73 9 

YOLOv4-P6 0.38 0.89 0.53 0.75 8 

YOLOv5n 0.77 0.80 0.79 0.82 63 

YOLOv5s 0.85 0.78 0.81 0.80 40 

YOLOv5m 0.8 0.78 0.79 0.84 25 

YOLOv5l 0.84 0.75 0.79 0.79 12 

YOLOv5x 0.87 0.74 0.80 0.79 10 

 
 

According to Table 4, the YOLOv4-tiny model provides the F1-Score of 0.89 as the highest value. Although 
YOLOv5 models perform similar results, it is seen that YOLOv4-CSP, YOLOv4-P5, YOLOv4-P6 models offer 
relatively lower F1-Scores compared to the other architectures. Additionally, all of the YOLOv5 models perform 
higher mAP values than YOLOv4 models. The YOLOv5m provides the mAP of 84% as the highest value. In order to 
perform real-time vehicle detection, the fps values of the models were considered and compared. In Table 4, it is 
seen that YOLOv4-tiny and YOLOv5n models with a processing speed of 63 fps are the fastest ones, which are 
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developed for low-performance systems. The slowest models are YOLOv4-P5, YOLOv4-P6 and YOLOv5x that are 
developed for high performance systems. 

As seen from Table 4, all of the YOLOv5 models provided the highest mAP values. Thus, mAP results regarding 
the classes i.e., car, minibus, and bus were analyzed for the YOLOv5 models. Table 5 represents the mAP results 
regarding the classes i.e., car, minibus, and bus for YOLOv5 models. The results show that cars are the most 
accurately detected class in all models. According to the table, the classes of minibus and bus reduce the overall 
accuracy. In Figure 9, detection results of target classes; minibus, bus and car for YOLOv5, in Figure 10 the sample 
display of results for cars and in Figure 11 the sample detection results of target classes; minibus, bus and car are 
given.  
 

Table 5. The mAP analysis for classes 
Model Car Minibus Bus 
YOLOv5n 0,94 0,80 0,60 
YOLOv5s 0,82 0,73 0,77 
YOLOv5m 0,90 0,73 0,74 
YOLOv5l 0,94 0,82 0,66 
YOLOv5x 0,93 0,82 0,61 

 
 
 
 

 
Figure 9. Detection results of target classes; minibus, bus and car for YOLOv5 
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Figure 10. The sample display of results for cars 

 

 
Figure 11. The sample display of results from target classes 

 
4. Discussion 
 

YOLO versions were preferred to perform the performance analysis of vehicle detection in terms of speed, 
accuracy, and learning capabilities. The YOLO model improves the speed of detection due to its working structure 
as in real-time. This model requires only a single forward propagation through a neural network to detect vehicles 
and also use a single bounding box regression to estimate the height, width, center, and target class of vehicles. 
YOLO is a prediction technique that provides accurate results with minimum errors. The architecture of YOLO has 
a learning capability for vehicle detection that enables it to learn the representations of vehicles. 

According to the results, the highest accuracy value for F1-Score was provided by the YOLOv4-tiny model with 
89% among all of the YOLO models in detecting vehicles in parking lots. Moreover, all of the YOLOv5 models 
present accuracies in the range of 79%-81%. Nevertheless, the accuracies of YOLOv4-CSP, YOLOv4-P5 and 
YOLOv4-P6 models were found below 70%. According to the mAP criteria, preferred widely in the literature to 
perform detection performance, the best accuracy value was obtained in the YOLOv5m model with 84%. For the 
other YOLOv5 models, the lowest mAP value was 79% and for all of the YOLOv4 models, mAP values were in the 
range of 73%-76%. According to the mAP results, an accuracy value of over 82% was obtained for car class in all 
of the models. The overall accuracy reduced depending on bus and minibus classes. There are a low number of 
buses and minibus in the training dataset, because the study area was restricted by the campus boundaries.  

In this study, another significant factor for selecting YOLO models in vehicle detection is the speed of detection. 
Labeling time of 94 images with a size of 2048 x 2048 took 5 hours. While model training in a cloud environment 
with the support of Google-Colaboratory GPU took approximately 2 hours for models with low depth, for the 
models with higher depth and complexity, that took about 7 hours. The total training duration for 9 models was 
about 40 hours. When the YOLO models were evaluated in terms of speed, it is seen that the speed results were 
provided directly proportional to the increase in scale. The fastest models are YOLOv5n and YOLOv4-tiny models 
with 63 fps. The YOLOv5s model with a speed of 40 fps and YOLOv5m model with a speed of 25 fps showed a 
performance close to the small-scale models. The detection speeds of the other models were in the range of 8-12 
fps. 

As a result, the advantages and disadvantages of different YOLO model versions were compared within the 
scope of vehicle detection and their performances were analyzed in this study. YOLOv4 and YOLOv5, which are 
the two advanced models of the YOLO architecture so far, have been preferred because of the detection success in 
accuracy. For this purpose, the most common problems; black vehicle detection, vehicle shadow detection, non-
vehicle object detection, detection of vehicles covered by trees and not being able to detect vehicles were analyzed 
for YOLOv4 and YOLOv5 models. 

In the model performance analysis, the correctly captured vehicle is shown with a frame in all of the figures. 
First, it was observed that there were incorrect or missing vehicle detection in the images obtained when trees 
covered the vehicles (Figure 12). Secondly, an important factor affecting the vehicle detection accuracy of the 
models is the errors due to shadows (Figure 13). Thirdly, in some YOLO models as shown in Figure 14 and Figure 
15, vehicles were not detected correctly when dark colored vehicles such as black and gray glow under the 
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influence of sunlight and have the same pixel gray value as the road object. Another important problem is that 
inaccurate vehicle detections caused by non-vehicle objects with the same geometric and color characteristics as 
the vehicle have been observed. Sidewalk (Figure 16) and container (Figure 17) could be given as an example of 
non-vehicle object detection. One of the important reasons for this situation is that the model was not trained well 
enough. In other words, as a result of insufficient labeling of different objects, the model cannot learn the 
properties of the objects and detects the target classes incomplete or incorrectly. 

It is seen that the color texture of the vehicles in the image has the same reflection value as the road, due to the 
fact that dark colored vehicles such as black and gray shine with the effect of sunlight. For this reason, the detection 
of road and vehicle objects according to the working principle and weight parameters in the structures of some 
YOLO models has not been carried out correctly. On the other hand, non-vehicle object detection problems have 
occurred in YOLOv4-CSP, YOLOv4-tiny, YOLOv4-P5, YOLOv4-P6, YOLOv5l, YOLOv5x models. Considering this 
problem, it has been observed that objects with similar geometry and close-image gray values to the training data 
labeled as vehicles are detected as vehicles incorrectly. On the other hand, in the YOLOv5n, YOLOv5s, and 
YOLOv5m models among all of the models, accurate vehicle detection has been achieved in containers, sidewalk 
and road objects, which have the same gray values as the bus.  
 
5. Conclusion  
 

In this study, the YOLO model, one of the commonly used object detection architectures in deep learning, was 
implemented for performance analysis of automatic vehicle detection using UAV-based aerial images within the 
scope of YTU Davutpasa Campus parking lots. For the performance analysis of vehicle detection, 9 different 
versions of the YOLO models namely YOLOv4-CSP, YOLOv4-tiny, YOLOv4-P5, YOLOv4-P6, YOLOv5s, YOLOv5l, 
YOLOv5m, YOLOv5n, YOLOv5x were utilized. Firstly, the data preparation stage, including labeling, data 
augmentation, training, validation and test data split, were performed. Secondly, model training with transfer 
learning was carried out for YOLO versions. At the training stage, the weights trained with the MS COCO dataset 
were accepted as initial weights and included in the deep learning network using transfer learning. The car, 
minibus and bus were labeled as target classes. A confusion matrix was created for the target classes and the 
results were compared in terms of mAP, recall, precision, and F1-Score values. In addition, the accuracy analysis 
and speed comparisons of the models were considered. At the last stage, the weights trained were applied to the 
test data containing the parking lots. 

According to the results, when analyzing the dataset with a limited GPU support, it is seen that large-scale 
models could not be trained properly. Thus, to determine the real performances of YOLOv4-P5, YOLOv4-P6, 
YOLOv5l and YOLOv5x models, it is recommended to train models with an unlimited GPU support and more 
training epochs. Moreover, the number and diversity of the dataset should be increased with the use of high-
capacity processors. 

In recent years, integration of remote sensing and photogrammetry with deep learning methods will provide 
significant solutions especially in automatic object detection and extraction in terms of high accuracy, speed, and 
real-time data processing. In particular, this integration will be a very important data source for local and private 
administrations such as for the management of smart cities with accurate and real-time vehicle detection, planning 
at roads and intersections, and management of transportation. In deep learning algorithms, transferring the 
features of objects to the model as parameter values with different weights using training networks and image 
processing techniques will become the most preferred method of obtaining data information in the future. Today, 
where accurate data is the most valuable information, it can be concluded that object classes belonging to roads 
and road networks will be supportive for the management and planning of highways and parking lots thanks to 
large data processing and integration with geographic information systems. 
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Figure 12. The effect of trees on vehicle detection 

 

 
Figure 13. The effect of shadows in the image on vehicle detection 
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Figure 14. The incorrect detection sample for the black colored vehicle in YOLOv4-P6 

 

 
Figure 15. The performance of YOLOv4 and YOLOv5 for the black colored vehicle detection 
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Figure 16. Non-vehicle object detection: sidewalk example 

 

 
Figure 17. Non-vehicle object detection: container example 
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 In recent years, the formation of urban heat islands occurring both depending on urban 
structuring and human activities has been the focus of attention of many researchers. In 
particular, remote sensing data has been widely used in this type of research. Because 
with the development in satellite and remote sensing technologies, satellite sensors that 
detect at different spatial, spectral, and radiometric resolutions not only enable the 
determination of land use classes on the Earth's surface but also allow the determination 
of the land surface temperature. In this study, Landsat 8 OLI-TIRS images of 2018 were 
used to determine the urban area and land surface temperature. Urban areas were 
determined by applying Normalized Building Difference Index (NDBI) to the Short-Wave 
Infrared (SWIR) and Near Infrared (NIR) bands of the Landsat 8 OLI sensor. Thermal 
Infrared (TIR) bands of the Landsat 8 TIRS sensor were used to determine the land 
surface temperature (LST). According to the results obtained, the lowest average 
temperature value is 22 °C in the Adalar district and the highest average temperature 
value is 33 °C in the Gaziosmanpaşa district, and there is a positive 76% linear 
relationship between the urban object ratio and the land surface temperature. 

 
 
 
 
 

1. Introduction  
 

It is known that urban areas with dense impermeable surfaces such as buildings or roads have an impact on 
climate at different scales. Therefore, urban areas tend to offer a higher temperature compared to the surrounding 
rural areas.  

Today, the increasing availability of images from Landsat series satellites on a global scale has enabled both 
periodic and high spatial resolution analysis of the relationship between urban growth dynamics and land surface 
temperature. To make this comparison correctly, first of all, it is necessary to determine the urban areas from 
satellite images with high spatial accuracy. For this purpose, different algorithms designed to determine urban 
areas with high spatial accuracy have been proposed in the literature. Some of those; Urban Index (UI) [1], Bare 
soil index (BI) [2], Normalized Difference Bareness Index (NDBaI) [3], Index-based building index (IBI) developed 
to determine the characteristics of built-up areas from satellite images [4], and Enhanced Built-Up and Bareness 
Index (EBBI) developed to map built-up and bare land in an urban and urban area [5], have been employed in 
various studies. These indices are widely adopted for monitoring urban growth, given their relative simplicity and 
easy implementation. The basis of these algorithms is that urban areas have a higher reflection response in the 
short wavelength infrared (SWIR) wavelength range of the Electromagnetic spectrum compared to green, red, and, 
near-infrared (NIR) ranges.  
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Land Surface Temperature (LST) is widely used in hydrology, meteorology, geography, urban heat islands, 
forest fires, hydrological modeling on a regional and global scale [6-7]. In studies conducted to determine land 
surface temperature and urban heat island formations. With the developments in remote sensing technologies, 
satellite sensors that detect in the thermal infrared region of the electromagnetic spectrum are used as an 
information source for determining the surface temperature. Landsat series satellites of them are often preferred 
among researchers because they have sensors that shoot in the Thermal Infrared (TIR) region. Taha [8] 
determined the causes and effects of the formation of urban heat islands. Jiang and Tian [9], on the other hand, 
investigated the effects of land change and land use on land surface temperature using the thermal bands of 
Landsat ETM+ satellite imagery. Bokaie et al. [10] evaluated the urban heat island in Tehran based on the 
relationship between land use and land surface temperature. Sarp [11] investigated the relation between LST and 
vegetation relation based on Landsat TM5 data and found a significant inverse relationship between the LST and 
vegetation. Erener and Sarp [12] evaluated the environmental effects of the dams in their study and tested the 
relationship between vegetation, surface humidity, and surface temperature distributions in these areas 
statistically. Sarp et al. [13] evaluated industrialization effects on urbanization and urban heat island formation 
and found a strong relationship between industrialization, urbanization, and heat island formation. Zhang et al. 
[14] evaluated the changes in LST of the Ebinur lake between 1998 and 2011 and stated that the Landsat image is 
valuable data to estimate the relationship between LST and land cover factors. Temurçin et al. [15] evaluated the 
urban heat island formations through the structural differences in the morphology of the Istanbul city. In the study, 
they observed that the urban heat island effects increase in areas with high building density in the horizontal and 
vertical directions and that the urban heat island values increase by 1-2 °C in areas where the vertical structuring 
is intense compared to the surrounding areas. 

In this study, the relationship between land surface temperature and urban areas obtained from Landsat 8 OLI 
(Operational Land Imager) and TIRS (Thermal Infrared Sensor) satellite images were tried to be evaluated for the 
province of Istanbul. The difference of this study from previous studies is the use of images from the same satellite 
in determining both urban areas and land surface temperature, as well as a statistical comparison of urban object 
density and land surface temperature values on a district basis. 

 

2. Material and Method 
 

The image of the Landsat 8 OLI-TIRS satellite was used in the study, dated April 23, 2018, was downloaded free 
of charge from the United States Geological Survey (USGS) website [16]. Landsat 8 satellite has 2 sensors, OLI and 
TIRS. This satellite receives images in the Visible, Near Infrared (NIR), Short Wave Infrared (SWIR) and Thermal 
Infrared (TIR) ranges and has a spatial resolution of between 15 and 100 meters depending on the spectral range 
[7]. The technical specifications of the Landsat 8 OLI- TIRS satellite are given in Table 1 [7]. 

Table 1. Technical Specifications of Landsat 8 OLITIRS satellite 
Bands Spectral Range (micrometers) Resolutions (m) 

Band 1 Costal Aerosol 0.43 - 0.45 30 
Band 2 Blue 0.45 - 0.51 30 
Band 3 Green 0.53 – 0.59 30 
Band 4 Red 0.64 – 0.67 30 
Band 5 Near InfraRed 0.85 – 0.88 30 
Band 6 Short Wave Infrared (SWIR1) 1.57 – 1.65 30 
Band 7 Short Wave Infrared (SWIR2) 2.11 – 2.29 30 
Band 8 Panchromatic 0.50 – 0.68 15 
Band 9 Cirrus 1.36 – 1.38 30 
Band 10 Thermal Infrared 10.60–11.19 100 
Band 11 Thermal Infrared 11.50 – 12.51 100 

 
The method of the study consists of four different stages. In the first stage, Normalized Building Difference 

Index (NDBI) was obtained from the SWIR and NIR bands of the Landsat 8 OLI sensor, and the Normalized 
Vegetation Difference Index (NDVI) was obtained from the NIR and R bands of the Landsat 8 OLI sensor. In the 
second stage, NDBI and NDVI imageries are converted to binary classes with the help of natural breaks Jenks 
algorithm. In the third stage, the Land Surface Temperature (LST) was obtained from the TIR (band 10) of the 
Landsat 8 TIRS sensor. In the last stage, the relationship between the urban object ratios in each district area and 
the LST was evaluated with the Pearson linear correlation. 
 

2.1. Normalized Difference Built-Up Index (NDBI) 
 

For the identification of urban areas from Landsat 8 OLI-TIRS satellite images, Normalized Building Difference 
Index (NDBI) proposed by Zha et al. [17] was used. The main purpose of developing this index is to highlight urban 
areas with higher reflectance in the short-wave infrared (SWIR) region and lower in the near-infrared (NIR) 
region.  NDBI is calculated using the Equation 1. 
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NDBI=((SWIR-NIR))/((SWIR+NIR)) (1) 
 
In the resulting image (Figure 1a), NDBI values vary between -1 and +1, values close to +1 correspond to areas 

with urban objects (buildings, roads, etc.), while values close to -1 correspond to green areas and soil areas where 
there is no settlement.  

Since only urban objects are dealt with in this study, NDBI results are converted into binary classes 
representing residential areas (1) and other areas (0) with the natural breaks Jenks algorithm (Figure 1b). In the 
resulting image, residential areas representing urban objects could be determined up to 30 m in spatial resolution 
provided by Landsat 8 OLI satellite.  

To determine the urban object ratio on a district basis, the urban object ratios were calculated by districts, 
taking into account the number of values represented by 0 and 1 within each district boundary (Table 2). 
According to the results obtained, the districts with the highest rate of urban objects are Güngören with 52%, 
Gaziosmanpaşa with 45%, and Şişli with 42%. The districts with the lowest rate of urban objects are Şile with 2%, 
Çekmeköy, Adalar, and Beykoz districts with 3%. 

 
Figure 1. Normalized Building Difference Index (NDBI) Result (a); The result of the Jenks algorithm applied to the 
NDBI (0 (other areas) and 1 (urban areas)) (b); Normalized Difference Vegetation Index (NDVI) Result (c); The 
result of the Jenks algorithm applied to the NDVI (0 (other areas) and 1 (vegetated areas)) (d). 
 

Table 2. Urban object ratios by districts 
District Name Building Density by Districts (%) District Name Building Density by Districts (%) 
Şile 2 Çekmeköy 3 
Bağcilar 31 Güngören 52 
Kağithane 24 Arnavutköy 6 
Beşiktaş 17 Esenler 24 
Fatih 39 Zeytinburnu 29 
Kadiköy 30 Ümraniye 24 
Küçükçekmece 15 Sultanbeyli 20 
Adalar 3 Bahçelievler 38 
Esenyurt 21 Sultangazi 12 
Gaziosmanpaşa 45 Sariyer 4 
Bakirköy 13 Tuzla 8 
Beylikdüzü 8 Ataşehir 22 
Bayrampaşa 29 Başakşehir 6 
Büyükçekmece 7 Beykoz 3 
Eyüpsultan 5 Sancaktepe 10 
Şişli 42 Avcilar 14 
Üsküdar 22 Silivri 8 
Kartal 20 Maltepe 14 
Beyoğlu 40 Pendik 9 
Çatalca 4   
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2.2. Normalized Difference Vegetation Index (NDVI) 
 

The NDVI index is a measure of the amount and vitality of surface vegetation. Considering that green vegetation 
containing chlorophyll reflects well in the near-infrared (NIR) part of the spectrum and absorbs well in the red (R) 
wavelength range in the visible region, the NDVI is calculated using Equation 2 [18]. 

NDVI=(NIR-R)⁄(NIR+R) (2) 
 

The NDVI result obtained is presented in Figure 1c. In this figure, NDVI values vary between -1 and +1, and 
values close to +1 represent areas with active vegetation and low (near-zero or negative) values indicate other 
types of materials [19]. To determine only the green areas from the NDVI image, the natural breaks Jenks algorithm 
was applied to the NDVI results. The resulted binary images indicating 0 (other areas) and 1 (vegetated areas) 
were given in Figure 1d. 
 
2.3. Land Surface Temperature (LST) 
 

The thermal band (Band 10) of the TIRS sensors of the Landsat 8 satellite was used to obtain the LST values. 
For the LST analysis, firstly, the numerical values (DN) were converted into spectral reflectance values using 
Equation 3 (4).  

𝐿ʎ =
(𝐿𝑀𝐴𝑋ʎ − LMİNʎ)

(𝑄𝐶𝐴𝐿𝑀𝐴𝑋ʎ − QCALMİNʎ)
𝑥 (𝐷𝑁 − 𝑄𝐶𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑀𝑖𝑛ʎ (3) 

 
In this formula; Lʎ shows the spectral radiance value, DN shows the numerical cell values, Lmin and Lmax show 

the minimum and maximum spectral reflectance values in the thermal band, QCalMin, and QCalMax show the 
calibrated minimum and maximum cell values [20]. Equation 4 was used to convert the obtained spectral 
reflectance values to temperature values.  
 

𝑇 =
𝐾2

ln (
𝐾1

𝐿𝜆
) + 1

 
(4) 

 
where, T represents the temperature value in Kelvin, and K1 and K2 are the calibration constants of the TIR 

band. In this case, K1 and K2 constants for the Landsat 8 TIR band 10 are 774.89 and 480.89, respectively. 
The obtained land surface temperature distribution is shown in Figure 2. In this figure, the temperature 

distributions in the study area vary between 12.77 0C and 48.67 0C. Areas with high temperatures generally 
correspond to areas with dense urban objects, while areas with low land surface temperature generally 
correspond to wetlands and green areas obtained as a result of NDVI. 

Considering the averages of LST values on a district basis (Table 3), it was determined that the lowest average 
temperature value was 22 0C in the Adalar district and the highest average temperature value was 33 0C in 
Gaziosmanpaşa district. 

 
Figure 2. Land Surface Temperature Map (LST) 
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Table 3. Descriptive statistics of Land Surface Temperature (LST) by districts 

District Name 
Min 
(°C) 

Max 
(°C) 

Mean 
(°C) 

District Name 
Min 
(°C) 

Max 
(°C) 

Mean 
(°C) 

Şile 16 37 26 Çekmeköy 17 36 26 
Bağcilar 25 39 31 Güngören 27 35 31 
Kağithane 24 36 31 Arnavutköy 15 47 27 
Beşiktaş 16 33 27 Esenler 24 36 30 
Fatih 16 35 29 Zeytinburnu 18 36 29 
Kadiköy 15 38 28 Ümraniye 22 43 30 
Küçükçekmece 17 39 29 Sultanbeyli 21 36 30 
Adalar 16 30 22 Bahçelievler 24 38 30 
Esenyurt 23 44 31 Sultangazi 19 37 29 
Gaziosmanpaşa 26 37 33 Sariyer 14 37 26 
Bakirköy 17 42 28 Tuzla 17 41 28 
Beylikdüzü 17 41 28 Ataşehir 22 44 30 
Bayrampaşa 25 46 32 Başakşehir 21 41 28 
Büyükçekmece 17 42 27 Beykoz 14 36 26 
Eyüpsultan 18 38 27 Sancaktepe 19 35 28 
Şişli 24 35 30 Avcilar 18 37 28 
Üsküdar 17 34 28 Silivri 17 45 28 
Kartal 18 38 28 Maltepe 20 36 27 
Beyoğlu 14 35 30 Pendik 17 40 27 
Çatalca 16 38 27     

 

2.4. Evaluation of the relationship between land surface temperature and urban object ratio with pearson 
linear correlation 
 

Correlation is a measure of the relationship between two variables. A change in the size of one variable in 
related data is related to the size of another variable in the same or opposite direction. This relationship value can 
vary between -1 and +1. Values close to -1 mean that the relationship is negative, and values close to +1 mean that 
the relationship is strong and positive [21]. 

The relationship between the two variables is determined by the Pearson Linear Correlation coefficient [22]. 
This correlation coefficient was developed by Karl Pearson (1857–1936). The Linear Correlation coefficient is 
given in Equation 5 [23]. 

 

𝑟 =
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]
 (5) 

 
Where r is the Pearson Coefficient, ∑xy is the sum of the product of the paired data, ∑x and ∑y are the sums of 

data, ∑x2 and ∑y2 are the sums of the squares of the data. 
In this study, the averages of the land surface temperatures obtained in the districts and the percentage 

distributions of the urban object ratios in the districts were evaluated with the Pearson linear correlation method. 
According to the results obtained, the r value is 0.76. This value indicates that there is a positive relationship 
between these two variables. 
 

3. Results and Discussions 
 

As a result of the study, the building densities falling within each district boundary and the temperature values 
within the district boundaries were compared. According to the districts, the average surface temperature is the 
lowest at 22 °C, and the highest temperature is 33 °C. The district with the lowest temperature is Adalar, and the 
district with the highest temperature is Gaziosmanpaşa. When we look at the urban object ratios of the districts, 
the highest urban object ratio is Güngören district with 52%. The district with the lowest rate of urban objects is 
Şile with 2%.  

The positive linear relationship between urban object ratios and surface temperatures is 76%. When the NDVI 
results are compared with the LST distributions, it is observed that the LST distributions show high values not 
only in urban areas but also in bare lands [24]. Urban areas, pavements, asphalt, buildings, etc., absorb and retain 
heat. surfaces are exposed to higher temperatures due to one reason for having high-temperature values for bare 
land is that most bare areas are devoid of vegetation. This leads to an increase in the amount of thermal energy 
emitted by the bare ground and hence an increase in temperature [24]. Green areas in urban areas have a positive 
effect on land surface temperature in terms of reducing the effect of urban heat island formation. Especially in 
these areas, the cooling effect through shadow and evaporation helps to regulate the urban climate and reduce the 
effect of the urban heat island [13,25]. In the study, urban and vegetated areas were extracted from 30 m resolution 
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bands. On the other hand, LST was extracted from a 100 m resolution thermal band. Therefore, the comparison 
was made with air temperature, which is different and can sometimes result in big differences [26]. Rapid changes 
in environment may adversely affect ecosystem [27]. As a result, the increase in vegetation and wetlands caused a 
decrease in LST values, while the building density in urban areas caused an increase in LST values and vice versa 
[14]. In the study, this situation was also confirmed by Pearson Linear Correlation. 

 
 

4. Conclusion  
 

This study described the relationship between land surface temperature and urban area, in Istanbul which is a 
densely urbanized city of Turkey.  In the study urbanization density and LST are taken into account at the district 
base and the building densities falling within each district boundary and the temperature values within the district 
boundaries were compared. According to the districts, the average surface temperature is the lowest at 22 °C, and 
the highest temperature is 33 °C. The district with the lowest temperature is Adalar, and the district with the 
highest temperature is Gaziosmanpaşa. When we look at the urban object ratios of the districts, the highest urban 
object ratio is Güngören district with 52%. The district with the lowest rate of urban objects is Şile with 2%.  

The comparison reveals that, the positive linear relationship between urban object ratios and surface 
temperatures, which amount is 76%.  On the other hand, the spatial comparison of vegetation areas and urban 
areas with the LST distributions revealed that the LST distributions show higher temperature values in both urban 
and bare land. 
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 Problems such as global warming and climate change have been increasing their impact 
in the world negatively in recent years. With the development of the industry, more 
factories were established. Thus, more harmful gases were released into the 
environment with more factories. This ultimately caused environmental pollution and 
eventually damage to the atmosphere. In pursuit of this, the rays coming to the Earth too 
much have triggered Global Warming. The earth's surface temperature is severely 
affected by the energy exchange between the earth and the atmosphere. The surface 
temperature can be measured by terrestrial measurements, but there are constraints in 
terms of continuity, time, and cost. In this sense, remote sensing is a technology that is 
fast, reliable, and provides an advantage over terrestrial measurements in terms of cost. 
Within the scope of this study, the 16-year process between the land surface temperature 
maps of Kocaeli Province was examined by remote sensing. In this context, Landsat 8 
OLI_TIRS and Landsat 5 TM satellite images were used dated 02.07.2017 and 02.07.2001 
respectively. Temperature changes were obtained for the different land uses and 
evaluated for 16-year period in the GIS environment. 

 
 
 
 
 
 

1. Introduction  
 

The data obtained by Meteorology Affairs from the point ground stations is one of the most used data in 
evaluating the ground surface temperature measurements. There are kilometers of distance between these 
stations, and the measured value can usually only represent that point and its surroundings. For this reason, 
obtaining information about each point on the surface is done by interpolation methods, this remains far from 
representing the real data. Because the earth is not just plains. It consists of high mountains, indented shapes, and 
mountainous areas.  Variation in altitude and changes in land use will also bring about differences in surface 
temperatures. In this sense, stations representing the data of the surface pointwise are limited in producing 
continuous data. Images taken from satellites are used for land use map creation, classification, etc. although, they 
can be used in measuring the ground surface temperature. These images consist of bands. Each band has a 
reflectance value. The thermal infrared regions are providing data to create temperature distribution of surface. 
In the last 40 years, many studies have been carried out on the urban heat island to determine the ground surface 
temperature. In the literature, studies using satellite images and algorithms used for ground surface temperatures 
show diversity in the scientific field. Dağlıyar et al. [1] conducted a study in 2015 and determine the ground surface 
temperature of Kahramanmaraş province and its surroundings, using the data they received from the Landsat 
image. In the study carried out by [2], the relationship between urban heat island density and population in 10 
different regions with populations ranging from 1000 to 2 million was investigated and compared their results 
with previous studies. Ndossi et al. [3] used Aster satellite images in their study. They compared three algorithms 
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for LST. In the study conducted by [4], the spatial effects of urbanization on heat island formation were examined 
with Remote Sensing Technologies. Landsat-8 OLI-TIRS and Sentinel-2 satellite images were used in the study. In 
the research, vegetation areas were obtained from Sentinel-2 satellite images, and urban area information was 
obtained using the normalized building difference index (NDBI). In the study by [5], time-series Landsat (TM and 
ETM+) satellite data products have been employed to quantify the spatiotemporal LST and Urban Heat Island 
(UHI) intensity for the years 2000, 2005, 2010, and 2015, respectively. Jain et al. [6] investigated the effect of 
changing LULC, at a local scale, on various variables-land surface temperature (LST), normalized difference 
vegetation index (NDVI), emissivity, albedo, evaporation, Bowen ratio, and planetary boundary layer (PBL) height, 
from 1991–2016. Rosas et al. [7] used 28 Landsat 8 satellite images between April and December 2015 in their 
study. Şekertekin and Marangoz [8] examine the impact of Land Use Land Cover (LULC) on Land Surface 
Temperature using Landsat 8 satellite data for Zonguldak metropolitan region. Orhan [9] investigated the effect of 
urbanization on the surface temperature of the city of Mersin. In this context, the Land Surface Temperature maps 
of the years 1990-1999-2007-2011-2018 were produced and, CORINE land use/cover data were used to identify 
urban areas in 1990 and 2018. Land surface temperature is an important parameter that shows or manages the 
energy balance on the earth and is an important factor that directs the dynamic change of environment and earth 
resources [10-11]. 

Different methods could be used for geospatial informations from relevant digital data in many disciplines [12-
13]. GIS is a beneficial tool in evaluating the results obtained from satellite images [14]. Remote sensing and GIS 
technology is one of the essential tools in capturing spatial-temporal data and used for many applications 
intensively [14-15]. GIS is a tool for mapping and analyzing features and events on earth. Also, temperature 
changes can be obtained for the different land uses and evaluated in the GIS environment 

Various algorithms exist for the determination of earth temperatures. The most widely used algorithm includes 
Land Surface Temperature – LST. Within the scope of this study, LST maps were created for different periods of 
different land use within the borders of Kocaeli province by using Landsat-5/8 satellite images. The Landsat data 
used were to a common day of each year. To reach the near or similar days of satellite images of different years, 
archive data was searched. The changes in the forest, agriculture, industry-urban, and seawater areas were 
examined from LST maps produced between 2001-2017. 
 

2. Study Area and Data 
 

The study region has been determined as the provincial border of Kocaeli, whose population and urbanization 
are increasing day by day due to 14 organized industrial zones and existing job opportunities (Figure 1). Kocaeli 
is located in the northwest of Turkey between 40.7655° latitude and 29.9407° longitude. In Kocaeli, which has a 
population of 1,883,270 million people for 2018, there are 521 people per square meter. The climate of the city, 
due to its special location, is a transitional climate between the Mediterranean climate and the Black Sea climate. 
 

 
Figure 1. Kocaeli map and land use of the study area 
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The data used in this study are presented in Table 1. Landsat 5 and Landsat 8 satellite images taken in very 
recent months were used to determine the land surface temperature. These images were obtained from free 
satellite images available on the USGS website [16] and [17]. Meteorological data for Kocaeli province for the year 
2001-2017 for the day the satellite image was taken were obtained from [18]. 
 
 

Table 1. Data used in the study 
Data Type Data Used Band Spatial Resolution Date 
Meteorological Data Point Data Surface Temperature - - 2001-2017 

Land Use Data Polygon Land use - - 2013 

Remote Sensing Image Landsat 5 TM B6 Thermal  10.4-12.50 120x(30) 02.07.2001 

Landsat 
OLI_TIRS 

B10 Thermal 10.60-
11.19 

100x(30) 02.07.2017 

 

The Landsat-8 satellite image consists of a total of 11 spectral bands and has 2 separate thermal bands ranges 
from 10.6-11.19 μm, 11.50-12.51 μm. The spatial resolution of the visible and infrared range is 30 m. Bands 10 
and 11 form the thermal bands of the satellite and its spatial resolution is 100 m. The satellite has a temporal 
resolution of 16 days. Landsat-8 satellite offers its products to its users with 16-bit radiometric resolution (Figure 
2a). The Landsat-TM satellite image consists of a total of 7 spectral bands and the 6th band, which is in the range 
of 10.40-12 μm, constitutes the only thermal band of the satellite. The spatial resolution of the bands in the visible 
and infrared region is 30 m, and the spatial resolution of the 6th band in the thermal range is 120 m. Landsat-5 
satellite, which has a temporal resolution of 16 days, offers its user’s images with 8-bit radiometric resolution 
(Figure 2b). 
 

 
Figure 2. Raw data used in the study of Landsat satellite, a. Landsat8 (10th band), b. Landsat5 (6th band) 

 
3. Land Surface Temperature (LST) Algorithm 
 

In this study, a continuous surface temperature map of Kocaeli was calculated using the Land Surface 
Temperature algorithm. Since the radiance values are used while calculating the surface temperatures, the 
numerical values of the satellite data should be converted to the radiance value. The effect of land cover and 
topography should be taken into account when interpreting the radiant temperature image [19]. 

For this purpose, initially by using Equation (1), the pixel values of the thermal band were converted into 
spectral radiance (Lλ) values. Radiance is the amount of energy reflected from the field at a certain wavelength at 
a certain angle [1,20-21]. 
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Lλ- spectral radians, Qcal digital numbers of the relevant band, Lmax-min values were obtained from the metadata 
file of the data.  

The radiance value consists of the thermal dissipation component, which is formed due to the temperature of 
the material on the earth's surface being above zero, the radiation when the atmosphere temperature is above 
absolute zero, the absorption and refraction of the radiation made by the material in the atmosphere and the 
components that occur as a result of atmospheric events. To correct these, the radiance values for the thermal 
band (10th band) of the Landsat 8 TM satellite data and the thermal band (6th band) of the Landsat 5 TM satellite 
data should be converted to luminance temperature values [19]. 
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TR luminance temperature value on the sensor (K), K1 is the first calibration constant, K2 is the second 
calibration constant, Lλ is the spectral radiance at the sensor. 
 

Table 2. Calibration Constant 
Satellite K1 K2 

Landsat 5 TM 607.76 1260.56 
Landsat 8 OLI_TIRS 774.8853 1321.0789 

 
 

Surface temperature; Lλ radiance, TR: luminance temperature value on the sensor, and the ε surface emissivity 
value is calculated together [22]. 
 

LST =  
TB

1 + (λ ∗  
T

h ∗  c / s
 )  ∗  In(ε )

 
(3) 

 
Here, LST is the surface temperature (K), TB is the blackbody temperature (K), λ is the wavelength of the 

reflected radiance (μm), α= hc/s (1.438x10-2Mk). 
Surface temperature maps were created by applying Equations 1, 2, and 3 to the downloaded satellite images 

for the study area, respectively, in the information technology environment. 
 

 
Figure 3. Landsat surface temperature maps, a. 02.07.2001 Landsat 5 TM, b. 02.07.2017 Landsat 8 OLI_TIRS 

 
The surface temperature map of Kocaeli province is presented in Fig. 3 for 2001 and 2017. It is evident from 

the observation that the temperature is very high within the city core as well as certain surrounding areas of the 
city, especially on the northern side. The temperature is comparatively lower on the eastern side of the city than 
in the western region. Certain peripheral regions, however, show a higher temperature. This can be due to the 
development taking place in the outer areas of the city and the destruction of vegetation in the outlying parts of 
the city. In particular, the increase in industry and urban construction can be considered as the cause of the 
increase in LST. The results were also compared with the meteorological temperature values. The LST values 
obtained from the satellite image are obtained continuously for the whole area, and it is not very meaningful to 
compare the continuous data with the data obtained from the point-based meteorological station. However, for 
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the general evaluation, the temperature averages obtained for the LST and meteorological data were compared. 
Accordingly, the surface temperature values obtained from the satellite and the meteorological temperature 
values have a temperature difference of 5-6 degrees from each other. The satellite data and the meteorological 
temperature in 2001 and 2017 increased 5.16 °C and 5.07 °C respectively. Since the temperature values obtained 
from the satellite image are obtained continuously and within the scope of the entire area, it is considered normal 
to see this temperature difference between the data obtained pointwise from the meteorological station and not 
exactly overlap. In addition, the fact that the surface temperature data obtained from satellite images cover the 
entire region also offers an advantage in terms of detecting the differences between different land-use areas. 
 
 
 

4. Discussion 
 

The temperatures in the LST maps obtained from the study were compared temporally for different land use 
areas. In this context, changes in temperatures in different land uses were observed. For this reason, temperature 
images and land use maps were overlapped. Sufficient samples were taken from the temperature images for the 
forest, agriculture, industry and urban, and seawater. The temperature values at the sampling points for the years 
2001 and 2017 were assigned to the databases of these random points. For these values, a new column was created 
on the database and the difference values were obtained by taking the difference of the 2001-2017 temperature 
values from each other. For each land-use area, the temperature distributions of the same point in different years 
were created.  
 

 
Figure 4. Temperature changes in different land use classes 
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It was observed that the 2017 and 2001 temperature values for the forest area range between 27 °C to 39 °C 
and 22 °C to 31°C, respectively. The meteorological temperature for 2017 and 2001 was on average 350C and 31°C.  
It was clear that both of the values were increased in 2017 compared to 2001 for forest regions. Similarly, an 
increase in temperature was observed in other land uses in 2017 compared to 2001.  For the agricultural area, 5 
°C differences were observed for the maximum temperature values between 2017 and 2001. On the other hand, 
the temperature difference is quite high for industrial and urban regions. 2017 and 2001 temperature values for 
the industrial and urban regions range between 50 °C to 31 °C and 39 °C to 27 °C, respectively. As can be seen in 
the temperature graph for the industrial-urban area, it was observed that the temperature values were higher for 
2017 compared to 2001. As can be seen from the temperature graph for the seawater area, it was observed that 
the temperature values in the sea area were higher for 2017 compared to 2001.  
 
 

 
Figure 5. Average temperature changes between 2017 to 2001 for meteorology and different land uses a. Forest, 

b. Agriculture, c. Industry-Urban, d. Seawater 
 

The average temperatures were calculated for the temperature variation differences in the land use areas. 
While the average was 28 °C in 2001, it was determined to be around 32 °C in 2017 for forest regions. In 
agricultural areas, the average difference between meteorological stations increased by 5 degrees from 2017 to 
2001, while this increase is about 4 degrees according to the points above LST. On the other hand, while the 
average difference over LST between 2017 and 2001 for industry-urban regions increased by 9 °C, this difference 
increased by 4 °C in meteorological stations. A similar situation is observed in seawater areas. While the difference 
in temperature averages over LST in 2017-2001 increased by 10 °C, the increase between the meteorological 
station averages was 4 °C approximately.  
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5. Conclusion  
 

Increasing urbanization and industrialization have caused the air temperature to rise due to the pollution of 
the environment and atmosphere. This change has occurred as an environmental factor that negatively affects the 
life of living beings. Therefore, remote sensing technology and surface temperature research have made progress 
in this direction. In the study, the land surface temperature of Kocaeli Province was determined with the help of 
remote sensing techniques from the Landsat 5 TM image dated 2001/07/02 and the Landsat 8 OLI TIRS image 
dated 2017/07/02. When the LST maps were examined, it was observed that the temperature increased around 
the bay in the 16 years. As a result of the study, the comparison of surface temperatures according to 16-year 
period was made for four different land uses. Accordingly, it was observed that temperature increased from 2017 
to 2001 in all land use areas. An average temperature of 4 °C, 5 °C, 9 °C, and 10 °C increased in the forest, 
agricultural, industrial-urban, and seawater areas in Kocaeli Province.  

According to the results, the average temperatures have increased, especially in industrial-urban and seawater 
areas. This temperature increase may be meaningful with the increase in sea pollution and industrial factories 
with the increasing population. However, it should not be forgotten that the satellite image reflects the day it was 
taken and provides information about the weather conditions of that day. People who affect the observed 
temperature changes need to be more sensitive to the environment and nature and behave carefully. It is 
recommended not to harm biological activities by reducing all kinds of harmful effects such as vehicle density and 
exhaust, building density, uncontrolled factory fumes, chemical products, etc., which are harmful to the 
atmosphere and cause temporal temperature differences, which are defined as global warming. There has been a 
decrease in forest areas as a result of uncontrolled and rapid construction arising from the increase in migration 
to settlements. It is recommended that due care and diligence be shown to increase these green areas again. 
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