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 The city of Konya is experiencing intense drought stress and feels the threat of 
desertification most intensely. Due to the uncontrolled use of water resources and 
irregular precipitation regime, Karapınar and its surroundings faced the danger of 
desertification in a short time. Lake Meke, which has been facing drought for many years, 
has been the subject of remote sensing research in recent years, with the widespread use 
of high-resolution satellite data. In this study, the temporal variation of Lake Meke 
between 2017 and 2021 for March was determined using 3 m spatial resolution 
multispectral Planetscope data. Wetland changes were determined using the Normalized 
Difference Water Index (NDWI) for each year of wetland boundaries. As a result, it was 
determined that the wetlands, which were relatively more in 2017 and 2018, 
experienced almost complete drought in 2021. When the surface area of wetlands is 
calculated, it was determined that there was approximately 75% wetland loss between 
the most significant area and the smallest area between 2017 and 2021. 

 
 
 
 
 
 

1. Introduction  
 

Drought is driving itself sensed on our planet and shows its effect by increasing day by day [1, 2]. Most of the 
research on drought covers large-scale wetlands such as lakes and streams [3]. The temporal analysis of wetlands 
of this size with remote sensing data has been achieved more frequently in the last quarter-century [4]. 

Our country, which connects the continents of Europe and Asia, has become a transition country in terms of 
drought. Due to desertification and rapid consumption of water resources, different problems occur regarding 
usable water resources in other geographical regions [5]. Konya, located in the Central Anatolia Region and is the 
largest city in Turkey in terms of surface area, is also in the most dangerous position in periods of drought and 
desertification [6]. Especially in and around Karapınar District, water use has been a big problem for years [7]. 
Known as the "Evil Eye Bead of the World", Lake Meke is more than affected by the danger of drought [8, 9]. 

There are different studies on determining drought as the metric. PDSI (Palmer Drought Severity Index) values 
are estimated using machine learning methods to predict drought values after one, three and six months [10]. 
Primary indices such as The Standardized Rainfall Index (SPI) and the Normal Percentage Index (PNI) are also 
used in drought analyses on a monthly, annual and seasonal scale [11]. Konya Closed Basin (KCB) is one of the 
regions where the effects of drought are felt the most due to its semi-arid climate. In the research, which analyzed 
the KCB region between 1998 and 2015 in terms of severity, duration and impact area of drought, seven long dry 
periods took place, and the most severe and the highest average impact area was experienced in the period of 2006 
December - 2007 October [12]. 

Meke Lake is a fantastic place visually and has an essential position as a wetland in the Konya Closed Basin. 
Due to biodiversity, Lake Meke, an essential lake, also has an important place for the Karapınar District. In the 
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region, where agricultural activities have significantly increased over the years, drought has increased, while 
water consumption has increased [13]. 

This research carried out a drought analysis of Lake Meke and its surroundings with temporal remote sensing 
data. The spatial water body was produced from Planetscope data using the Normalized Difference Water Index 
(NDWI). As a result, it has been determined that wetlands are gradually decreasing in 2019, 2020, and 2021 
compared to 2017 and 2018. 
 

2. Material and Method 
 

In this study, data with the most appropriate visibility were determined and downloaded from the PlanetScope 
system with a spatial resolution of 3 m in March, the month when the wetlands were the widest. The obtained data 
were first processed as RGB images with appropriate band combinations. The suitable filter was searched for 
sharpening the data and enriching the details, and the RGB data were optimized with the Arithmetic Average Filter. 
In order to reveal the wetland areas, the data for each year was arranged with the NDWI index. Afterwards, 
necessary analyzes were made, and Change Detection was carried out. As a result of this, drought analysis was 
carried out depending on the wetland changes (Figure 1). 

This study produced NDWI indices using Planetscope multispectral (MS) 3m spatial resolution data. In 
addition, the Arithmetic Mean Filter (3 × 3 pixels) was applied to NDWI images with five iterations to enrich and 
sharpen the wetlands in the images.  
 

 
Figure 1. Workflow of the study 

 

2.1. Study Area 
 

Lake Meke, which is located at an altitude of approximately 980 m above sea level and is a volcanic structure, 
has been known as the "Evil Eye Bead of the World" for years because it looks like a black dot in the middle of its 
blue waters [9]. The red appearance formed by the shrinking wetlands is due to living microorganisms. It was 
included in the Ramsar Convention, an international convention aimed at protecting and sustaining wetlands, in 
2005 [14, 15]. Lake Meke, which was selected for the study area of this research, is located in Turkiye, as presented 
in Figure 2. 
 
2.2. Planetscope Remote Sensing Data  

 

Planetscope constellation satellites consist of data from multiple launched satellite clusters, each in the form of 
cube satellites (DOVEs). The Sun-synchronous constellation system has the Ground Sampling Distance (GSD) in 
the nadir direction is 3.9 meters (Table 1). Multispectral data is presented in 4 bands (RGB+Near Infrared). 
Planetscope orthomosaic data is given to users with radiometric calibrated, and sensor corrections are applied, 
orthorectified, and converted into a UTM projection. 

Since the overall area of Lake Meke's wetlands is not particularly large, using satellite data with a high spatial 
resolution is more helpful in finding actual wetlands. For this reason, analyzes were made using PlanetScope high-
resolution MSI images. 
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Figure 2. Study area 

 
Table 1. Remote sensing data specs 

Data Type Date of Acquisition Spatial Resolution Bands 

AnalyticMS-SR 03/22/2017 ~3 m RGB+NIR 

AnalyticMS-SR 03/21/2018 ~3 m RGB+NIR 

AnalyticMS-SR 03/23/2019 ~3 m RGB+NIR 

AnalyticMS-SR 03/22/2020 ~3 m RGB+NIR 

AnalyticMS-SR 03/19/2021 ~3 m RGB+NIR 

 
 
2.3. NDWI  
 

NDWI is used to reveal wetlands' temporal changes occurrences by remote sensing [16-18]. It is based on a 
different combination and normalization of the bands (Equation 1). If the reflectance values are more significant 
than 0.5 in the result obtained, these areas generally correspond to water bodies. 
 

𝑁𝐷𝑊𝐼 =
𝐵𝑎𝑛𝑑 2 (𝐺𝑟𝑒𝑒𝑛) −  𝐵𝑎𝑛𝑑 4 (𝑁𝐼𝑅)

𝐵𝑎𝑛𝑑 2 (𝐺𝑟𝑒𝑒𝑛) +  𝐵𝑎𝑛𝑑 4 (𝑁𝐼𝑅)
 (1) 

 
 
 
2.4. Aritmetic Mean Filter  
 

The filter, known as the arithmetic mean filter, is a preferred image processing for sharpening and enriching 
the details in images. Sharpening and enriching provide convenience in the study and eliminate some errors 
caused by image acquisition. The arithmetic mean filter, which has been tried on data and has shown successful 
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results, has been preferred because of its positive effects on evaluating results. When used as 3 × 3, it serves to 
rearrange the image using the arithmetic means of eight different neighbors of a pixel. The mean filter is a simple 
way to reduce noise in an image. If the size of the template matrix increases (like 5 × 5 or 9 × 9), the smoothing 
will increase even more. 
 
2.5. Image Differencing Change Detection  
 

The registered, normalized multi-temporal satellite images could be subjected to four of the most widely used 
change detection techniques. These techniques comprise post-classification, image differencing, image rationing, 
and principal components analysis (PCA).  

The digital number (DN) value of a pixel for a specific band on one date is deducted from the DN value of the 
same pixel for the same band on another date to conduct the image differencing change detection approach [19, 
20]. Three different images for the three bands, red, green, and blue, were produced via pixel-by-pixel subtraction 
of each band from image 2017 to 2021. 
 
 

3. Results  
 

As a result of the data evaluation for March of five different years belonging to Lake Meke, the surface area 
changes of the wetlands over the years (2017-2021) have been visually determined and presented in Figure 3. 
Change detection performed in this investigation is also presented in Figure 4. Relative accuracy can be mentioned 
when evaluating the findings. For this reason, no accuracy assessment was carried out in the research. Since the 
study area is not very large, it is assumed that the errors caused by the satellite data and the rough errors caused 
by the operator do not have a large percentage. 
 

Table 2. Change detection of Meke Lake between 2017-2021 
Data Type Date of Analysis Total of Wetland and Humid Lands 

(Ha) 
Amount of Change (Ha) 

AnalyticMS-SR 03/22/2017 ~38.4 - 

AnalyticMS-SR 03/21/2018 ~45.5 ~+7.1 

AnalyticMS-SR 03/23/2019 ~18.9 ~-25.6 

AnalyticMS-SR 03/22/2020 ~14.1 ~-4.8 

AnalyticMS-SR 03/19/2021 ~10.2 ~-3.9 

 
The evaluation was made on wetland, humid land, and dry land. When evaluated like this, the wetlands of Lake 

Meke, which had an increasing trend in 2017 and 2018, drought sharply in 2019, and in 2020 and 2021, the 
drought continued, and Meke Lake was almost wholly drought out (Table 2). 
 
 

4. Discussion 
 

Previous research has stated that Lake Meke and the Konya Closed Basin, where it is located, experience 
drought and will completely dry out in the coming years. Dogan, Berktay [8], in his drought analysis study covering 
the years between 1972 and 2009, revealed the drought threat for the Konya Closed Basin. Information has been 
provided that Lake Meke, located in the study area, is also under the threat of drought. Celebi [13] has stated that 
while there were 45,000 wells and 1,760,456 hectares of cultivated land in 2002, there were over 100,000 wells 
and 2,023,513 hectares of cultivated land in 2011 in the Konya Closed Basin. Some have entirely dried up, such as 
the Hotamış and Eşmekaya marshes, and also some wetlands like Ereğli marshes, Salt Lake, Beyşehir Lake, Meke 
Lake and Samsam Lake have decreased by about approximately 30-85%. Even though the research and findings 
that have been going on for years revealed the threat of drought, and it has been stated that agricultural activities 
accelerate the drought in the region, it is seen that no precautions are taken, and the region is left to fate. As a 
result, it is seen that the drought experienced in Lake Meke is a situation from the past. Although this study, which 
was carried out between 2017 and 2021, is not based on the data obtained from the field, it is essential to reveal 
the change in the surface area. It is possible to say that Lake Meke has been exposed to an irreversible drought. 
 
 
 



Advanced Remote Sensing, 2022, 2(1), 01-07 
 

5 
 

 
Figure 3. Wetland analysis from March data and change detection (a: the year 2017, b: the year 2018, c: the year 

2019, d: the year 2020, e: the year 2021) 
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Figure 4. Change detection analysis from 2017-2021 

 

5. Conclusion  
 

This study successfully performed temporal drought analysis of Lake Meke in Karapınar District of Konya 
Province with Planetscope 4-band MS remote sensing data. From the March data for the years 2017-2021, new 
results of the NDWI indices were produced, wetlands and humid lands were determined, and change detection 
analyzes were obtained. It has been revealed the wetland area of Lake Meke, which was about 38 hectares in 2017, 
decreased to about 10 hectares in 2021. Using data sources such as PlanetScope constellations in monitoring 
studies of tiny wetlands, where the spatial resolution of the Landsat and Sentinel satellite data used by the 
researchers as free of charge satellite data is insufficient, can be said to be the most significant contribution to the 
literature of this study. 
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 It is essential to monitor the changes in wetlands on the earth's surface to understand 
the impact of global climate changes and human activities on water resources. Remote 
Sensing (RS) techniques are beneficial in monitoring and mapping the dynamics of 
changes in wetlands. Although RS techniques seem practical in monitoring water 
surfaces, traditional RS methods require a high amount of workforce, software, 
hardware, and especially data storage needs. For this purpose, in this study, the change 
in water surface area of Marmara Lake, located within the borders of Manisa Province, 
between 2013-2022, was investigated with Google Earth Engine (GEE). The change in 
the water surface area was analyzed for four different seasons using Landsat-8 (OLI) 
images. The Normalized Difference Water Index (NDWI) was used in the study. The study 
is divided into four different classes according to the land use conditions of the region: 
vegetation, water surface, bare lands, and agricultural lands. Support Vector Machines 
(SVM), a machine learning algorithm, were used for classification. According to the 
analyzes made, it has been determined that a wetland of 3,975.78 ha has dried up in the 
lake surface area in the last eight years. This calculated area corresponds to an area of 
75.04%, according to the average of all areas. 

 
 
 
 
 
 
 

1. Introduction  
 

Water is undoubtedly the most valuable resource for living things and an essential ecosystem component. 
Climatic changes and human activities are significant for managing water resources for sustainable socio-
economic development [1]. At the same time, wetlands are a valuable natural resource for groundwater recharge 
and flood control [2]. However, the reduction and destabilization of wetlands pose a significant threat to 
biodiversity conservation and the ecological environment [3]. Therefore, the mapping and recording of wetlands 
play an essential role in the planning, protecting, and managing of wetlands [4]. In general, wetlands are part of 
the topography. They are considered one of the crucial ecosystems consisting of water, vegetation, soil, and 
microorganism systems and play an essential role in protecting the aquatic ecosystem [5].  

Extraction of water bodies plays a vital role in wetland management, assessing water cover status, and 
detecting and monitoring surface water exchange [6]. Furthermore, thanks to satellite data, remote sensing (RS) 

http://publish.mersin.edu.tr/index.php/arsej
mailto:ramazan.gungor@cbu.edu.tr
mailto:fbalik@yildiz.edu.tr
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techniques assist in monitoring temporal changes in water bodies and establishing decision-making policies [7]. 
RS is highly preferred, so it is cost-effective, fast, reliable, reproducible, challenging to access for larger areas, and 
an effective technique [8].  

Landsat images are advantageous to other satellite platforms in temporal tracking water surfaces, thanks to an 
archive of approximately 40 years and free access [9]. Furthermore, monitoring water surfaces is convenient with 
various machine learning algorithms and specially developed water extraction indexes on satellite images [10]. 
For example, the Normalized Difference Water Index (NDWI) uses the green and infrared bands to distinguish 
between water, soil, and terrestrial vegetation [11]. The modified NDWI (MNDWI) was proposed by using Short-
Wave-Infrared (SWIR) band instead of the Near-Infrared (NIR) band, which used NDWI due to vegetation cover 
soil characteristics, and the effect on built-up areas in the detection of water surfaces. Soil, vegetation, and resident 
classes have lower negative values because they reflect more of the SWIR band than the green band. Various 
methods have been proposed for the detection of water surfaces. These can be threshold determination over a 
calculated index [12-14], or different classification algorithms are used. These; Random Forest (RF), Support 
Vector Machines (SVM), and Maximum Likelihood Classification (MLC) are frequently preferred methods [15-20].  

Satellite data analysis reaching thousands of gigabytes is laborious and time-consuming for long time-series 
data [21]. In addition, the availability of suitable software and storage space appear as additional costs for data 
processing. Google Earth Engine (GEE), which works in the cloud platform and has been highly preferred in RS 
studies in recent years, provides access to all archives of Landsat data [22]. The Google firm developed GEE to map 
human settlements over large areas, study past changes, and continually update current estimates [23]. Thanks to 
its application program interface (API), GEE provides the opportunity to develop with JavaScript and Python 
languages and access and apply data at a petabyte-scale [24].  

Today, climatic changes cause severe effects on the ecosystem, especially water resources. Climatic changes 
such as global warming cause severe effects on lakes, which are freshwater sources. Depleting water resources, 
especially in developing countries such as Türkiye, causes severe pressures on the country's economy and policy 
[18]. Marmara Lake, located within the borders of Manisa Province in the Aegean region, is among the lakes of 
great importance, especially regarding agricultural irrigation and fishing activities. 

In this study, the temporal analysis of the change of Marmara Lake was examined using Landsat images on the 
GEE platform. Considering the characteristic land use of the region, the study area, which is divided into four 
different classes, is classified by the SVM machine learning algorithm. In addition, NDWI has been added to the 
classification as a new band because it differentiates it from other details by increasing the reflection values on the 
water surface. This study determined quantitative and qualitative temporal and spatial changes on the water 
surface between 2013-2022. It has been revealed that monitoring the changes in the water body of Marmara Lake, 
which is of great importance, especially for the region, is relatively easy with RS techniques. In addition, thanks to 
the code developed on the GEE platform, the Marmara Lake change will be realized dynamically and instantly in 
the coming years. In addition to providing a robust data analysis for decision-makers, this study also creates a 
database for climate change monitoring, agricultural activities, lake water use, and fishing and hunting activities 
in the region.  
 

2. Material and Method 
 
 

2.1. Study Area 
 

The Marmara Lake, which was analyzed within the scope of the study, is within the borders of the Salihli and 
Gölmarmara districts of Manisa province, located in the Aegean Region. The lake is an alluvial barrier lake within 
the depression area due to the breaking of faults in the north, west, and southeast directions within the Gediz 
graben. Marmara Lake, which is approximately 10-11 km in the east-west direction and approximately 3-5 km in 
the north-south direction, is spread over approximately 56 km2. The lake's depth varies between 3-5 m according 
to the water surface area, and it is at an average height of 79 m from the sea [25]. Lake water irrigates agricultural 
lands around the Ahmetli district within the Lower Gediz Irrigation Project [26]. The study area is shown in Figure 
1. 
 
2.2. Data 

 

This study used Landsat-8 (OLI) satellite images of the 2013-2022 time series (Collection 1 Tier 1 calibrated 
Top of Atmosphere, TOA) to monitor the water surface area change in Marmara Lake. The Landsat-8 satellite has 
a temporal resolution of 16 days from an altitude of about 705 km. The images obtained from the OLI sensor of 
this satellite have an area of 180 km and a 12-bit radiometric resolution. The sensor records geometrically 
corrected images in the VIS, NIR, and SWIR spectral regions for nine spectral bands with a spatial resolution of 30 
m and panchromatic bands with a resolution of 15 m. Satellite images were analyzed seasonally, and images with 
less than 15% cloud coverage were generally selected. The band information of the satellite image used in this 
study is given in Table 1. 
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Figure 1. Study area 

 

 
Table. 1 The spectral bands and resolutions of optical Landsat 8 datasets used in this study 

Spectral Range Wavelength Range (μm) Resolution (m) 
Blue (B2) 0.45-0.51 30 
Green (B3) 0.53-0.59 30 
Red (B4) 0.64-0.67 30 
NIR (B5) 0.85-0.88 30 
SWIR 1 (B6) 1.57-1.65 30 

 
 
2.3. Method 
 

First, NDWI was calculated using Lansat -8 (OLI) satellite images to monitor the temporal changes on Marmara 
Lake's water surface. In the second step, the classification process was done with the SVM algorithm. In the third 
step, an accuracy assessment was performed for each classified image. Then, all classification maps were 
converted to raster vectors, and lake surface areas were calculated. The flowchart is given in Figure 2. 
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Figure 2. Classification flowchart 

 
2.3.1. Normalized difference water index   
 

In Lansat -8 (OLI) satellite images, the NDWI is the normalized difference between the green band (band 3) and 
the near-infrared band (band 5). This index distinguishes water surfaces from other details on remotely sensed 
images. NDWI is widely used in the extraction of water bodies. The NDWI index is calculated by Equation 1. 
 

NDWI=
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
 (1) 

 
where NIR represents the near-infrared band, and green represents the green band. Water generally takes high 

NDWI values. NDWI values range from -1 to +1. Values close to +1 and +1 represent water, while values of 0 and 
below indicate the absence of water [27].  
 
 

3. Results  
 

In the study, satellite images of different time series (2013-2022) were processed on the GEE platform, and the 
change in the water surface area of Marmara Lake was examined. The satellite images monitored annual water 
surface changes with the NDWI index and SVM algorithm used to extract the water surface. When seasonal changes 
are examined, the average water surface area in 2013 was calculated as 5,297.95 ha. The same area was 
determined as 1,322.18 ha on average as of January 2022. The lake water surface area detected a decrease of 
3,975.78 ha in the mentioned period. This area corresponds to approximately 75% of the surface area calculated 
in 2013. In other words, most of the Marmara Lake dried up in the specified period. Since the water levels in the 
spring seasons will be more realistic, this situation is shown in Fig. 3 with the maps of the spring seasons of 2013 
and 2021.  

Additionally, when seasonal inspections of the lake's water area were conducted, it was determined that the 
lake reached its maximum size in the spring of 2014 and completely dried up in the fall of 2021. The change in the 
lake water surface is shown in Figure 3. In Figure 4, the seasonal water surface and average area change graph 
show that the water surface area continued to average around 5,000 ha between 2013 and 2016, but the average 
water surface tended to decrease in the following years. 
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Figure 3.2013 (a)-2021(b) spring land change 

 
 

 
Figure 4. Seasonal change of water surface areas 
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RS techniques are widely preferred today in the determination of water surfaces. Like this study, Hossen et al. 
[28] investigated the changes in the surface area of Lake Manzala in Egypt with RS techniques. They applied 
supervised and unsupervised classification techniques in their study. They also used NDWI to extract the water 
surface. Their study found that the water surface decreased by 46% between 1984 and 2015. Today, quite common 
water extraction indexes such as NDWI, MNDWI, and AWEI are used to extract water surfaces. The selection of 
these indices varies according to the characteristics of the water (dirty water, shallow or deep water, etc.) or 
environmental effects (urban area, shaded area, open area, etc.). Although the NDWI index was used in this study, 
MNDWI was used in our research, which gives better results, especially in shallow waters. Yang et al. [29] used 
MNDWI and AWEI indexes to extract water in urban areas in their study. In this study, it is noteworthy that MNDWI 
and AWEI were used to separate water from other details, especially in urban areas. The shadow effect on water 
in urban areas is greater than in open areas. Due to this effect, MNDWI index is more sensitive to spectral 
differences on water. Chen et al.  [30]  took into account the seasonal changes of the lake water in their study, as 
in our study. For this purpose, they estimated the lake water level from satellite altimetry data. Worden and Beurs 
[31] evaluated their performance using different water extraction indices on Landsat 8 images to detect water 
surfaces in the Caucasus. In their study, they determined that MNDWI performed better than others. They 
determined the water surfaces with 93% accuracy. This classification accuracy showed high accuracy, similar to 
our study.    

 
3.1. Accuracy assessment 

 
The classification accuracy of this study was tested by an error matrix. User's accuracy (UA), producer's 

accuracy (PA), overall accuracy (OA), and kappa (𝜿) were calculated in the created error matrix. For this purpose, 
random polygons were defined for each class on the GEE platform, and the pixels within these polygons were 
accounted for classification accuracy. Classification accuracy values are given in Table 2. 

 
Table.2 Classification accuracies 

 Autumn Spring Summer Winter 

 UA PA OA 𝜿 UA PA OA 𝜿  UA PA OA 𝜿  UA PA OA 𝜿  

2013 100.
00 

100.00 89.6
1 

0.75 90.8
0 

93.7
3 

90.0
0 

0.78 87.2
2 

100.
0 

93.7
5 

0.86 81.
25 

100.0
0 

91.0
3 

0.79 
2014 100.

00 
100.00 96.8

6 
0.93 79.4

7 
99.8

3 
90.8

5 
0.81 90.0

2 
100.
00 

94.4
1 

0.88 84.
41 

100.0
0 

92.3
0 

0.81 

2015 100.
00 

100.00 95.6
7 

0.90 94.4
1 

100.
00. 

95.7
7 

0.91 86.4
7 

100.
00 

96.8
9 

0.93 82.
23 

100.0
0 

91.9
3 

0.81 

2016 41.0
2 

100.00 86.4
1 

0.71 98.7
1 

100.
00 

93.4
8 

0.87 93.1
7 

100.
00 

96.8
6 

0.93 83.
51 

100.0
0 

93.2
6 

0.84 

2017 86.0
3 

100.00 94.7
5 

0.87 100.
00. 

100.
00 

95.5
3 

0.91 94.9
2 

100.
00 

94.4
3 

0.87 88.
27 

100.0
0 

92.5
8 

0.81 

2018 100.
00 

100.00 91.8
6 

0.79 100,
00. 

100.
00 

93.9
4 

0.88 100.
00 

100.
00 

95.7
1 

0.90 81.
64 

100.0
0 

92.4
5 

0.82 

2019 99.8
0 

20.19 92.3
1 

0.82 100,
00 

100.
00 

89.0
4 

0.78 100.
00 

100.
00 

93.5
7 

0.85 91.
49 

100.0
0 

91.3
0 

0.79 

2020 100.
00 

100.00 94.3
8 

0.85 90.0
2 

100.
00 

93.5
0 

0.84 100.
00 

100.
00 

95.2
5 

0.86 100
.00 

100.0
0 

92.0
0 

0.80 
2021-
2022 

0.00 0.00 91.8
7 

0.71 100.
00 

100.
00 

94.7
3 

0.87 100.
00 

100.
00 

97.0
7 

0.92 99.
41 

100.0
0 

96.2
3 

0.89 

 
Table 2 shows the accuracy values for UA and PA water surfaces. The OA and 𝜿 values represent the accuracy 

assessment of the complete classification. UA and PA values for water surfaces were above 85% in almost all years. 
Likewise, it was seen that the OA value was classified with an accuracy of nearly 90% over the seasons of all years. 
Classification accuracy could not be calculated due to water withdrawal in the lake in the 2021 autumn season. 
According to the classification accuracies calculated in this study, it can be easily said that this classification is 
successful.  
 

4. Conclusion  
 

In the study, the water surface area changes of Marmara Lake, located within the borders of Manisa province, 
were examined with GEE, a cloud-based RS platform. The change in the lake's water surface area between 2013-
2022 is shown in Fig. 4, and a 75.04% decrease in the water surface area has been detected. In addition, while the 
amount of agricultural land around the lake was 13,369.39 ha in 2013, this area was determined as 15,100.79 ha 
in 2021. In other words, the agricultural area around the lake has increased by 12.95%. As shown in Fig. 3, this 
area was used for agricultural purposes after the water withdrawal from the lake. 

As a result, the increased agricultural lands around the lake, unconscious resource use, drought, and 
evaporation due to global climate change have caused significant lake water surface area changes. Marmara Lake, 
one of the critical water resources of the Aegean Region, has an important place in terms of biodiversity. To protect 
such resources, more conscious and sustainable land management plans should be prepared, and it is 
recommended that these areas be protected. 
 

 
 



Advanced Remote Sensing, 2022, 2(1), 08-15 
 

14 
 

Funding 
 

This research received no external funding. 
 

Author contributions 
 
Ramazan Gungor: Conceptualization, Methodology, Software Osman Salih Yilmaz: Data curation, Writing-
Original draft preparation, Software, Validation. Fusun Balik Sanli and Ali Murat Ates: Visualization, 
Investigation, Writing-Reviewing and Editing. 
 
 

Conflicts of interest 
 

The authors declare no conflicts of interest. 
 
 
References  
 

 
1. Duan, W., Maskey, S., Chaffe, P. L., Luo, P., He, B., Wu, Y., & Hou, J. (2021). Recent advancement in remote sensing 

technology for hydrology analysis and water resources management. Remote sensing, 13(6), 1097. 
2. Rundquist, D. C., Narumalani, S., & Narayanan, R. M. (2001). A review of wetlands remote sensing and defining 

new considerations. 
3. Díaz-Pinzón, L., Sierra, L., & Trillas, F. (2022). The Economic Value of Wetlands in Urban Areas: The Benefits in 

a Developing Country. Sustainability, 14(14), 8302. 
4. Yan, Z., Zhang, K., Peng, Q., Kang, E., Li, M., Zhang, X., ... & Kang, X. (2022). Spatio-Temporal Variations and Socio-

Economic Driving Forces for Wetland Area Changes: Insights from 2008–2017 Data of Yunnan Province, 
China. Water, 14(11), 1790. 

5. Mitsch, W. J., Gosselink, J. G., Zhang, L., & Anderson, C. J. (2009). Wetland ecosystems. John Wiley & Sons. 
6. Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift 

Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote 
Sensing, 27(15), 3153-3181. 

7. Verpoorter, C., Kutser, T., & Tranvik, L. (2012). OCEANOGRAPHY: METHODS Automated mapping of water 
bodies using Landsat multispectral data. 1037–1050 

8. Arekhi, M., Goksel, C., Balik Sanli, F., & Senel, G. (2019). Comparative evaluation of the spectral and spatial 
consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest. ISPRS International Journal of Geo-
Information, 8(2), 56. 

9. Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., & Sekertekin, A. (2022). Assessment of Spatio-Temporal 
Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, 
Turkey. ISPRS International Journal of Geo-Information, 11(7), 407. 

10. Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., Farouk, H., & El-Hennawy, M. T. (2020). Coastal wetland vegetation 
features and digital Change Detection Mapping based on remotely sensed imagery: El-Burullus Lake, 
Egypt. International Soil and Water Conservation Research, 8(1), 66-79. 

11. Feeters, S. (1996). El Uso del Índice de Agua de Diferencia Normalizada (NDWI) en la Delineación de 
Características de Aguas Abiertas. Revista Internacional de Teledetección (17), 1425-1432. 

12. Babaei, H., Janalipour, M., & Tehrani, N. A. (2021). A simple, robust, and automatic approach to extract water 
body from Landsat images (case study: Lake Urmia, Iran). Journal of Water and Climate Change, 12(1), 238-249. 

13. Cordeiro, M. C., Martinez, J. M., & Peña-Luque, S. (2021). Automatic water detection from multidimensional 
hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of 
Environment, 253, 112209. 

14. Rad, A. M., Kreitler, J. R., & Sadegh, M. (2021). Augmented normalized difference water index for improved 
monitoring of surface water. Environmental Modeling and Software, 140. 

15. Reis, S., & Yilmaz, H. M. (2008). Temporal monitoring of water level changes in Seyfe Lake using remote 
sensing. Hydrological Processes: An International Journal, 22(22), 4448-4454. 

16. Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying 
waterbodies in remotely sensed imagery. International journal of remote sensing, 33(21), 6854-6875. 

17. Jawak, S. D., & Luis, A. J. (2014). A semiautomatic extraction of Antarctic Lake features using WorldView-2 
imagery. Photogrammetric Engineering & Remote Sensing, 80(10), 939-952. 

18. Temiz, F., Bozdag, A., Durduran, S. S., & Gumus, M. G. (2017). Monitoring coastline change using remote sensing 
and GIS technology: a case study of Burdur Lake, Turkey. Fresenius Environmental Bulletin, 26(12), 7235-7242. 



Advanced Remote Sensing, 2022, 2(1), 08-15 
 

15 
 

19. Mansaray, L. R., Wang, F., Huang, J., Yang, L., & Kanu, A. S. (2020). Accuracies of support vector machine and 
random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto 
International, 35(10), 1088-1108. 

20. Yue, H., Li, Y., Qian, J., & Liu, Y. (2020). A new accuracy evaluation method for water body 
extraction. International Journal of Remote Sensing, 41(19), 7311-7342. 

21. Zhuang, Q., Zhang, J., Cheng, L., Chen, H., Song, Y., Chen, S., ... & Li, M. (2022). Framework for Automatic Coral 
Reef Extraction Using Sentinel-2 Image Time Series. Marine Geodesy, 45(3), 195-231. 

22. Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., ... & Richardson, A. D. (2017). 
A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous 
United States. Remote sensing, 9(8), 863. 

23. Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., ... & Trianni, G. (2015). Multitemporal 
settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied 
Earth Observation and Geoinformation, 35, 199-208. 

24. Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. K. (2016). Detecting the boundaries of urban areas in india: 
A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8), 634. 

25. Gülersoy, A. (2013). Marmara Gölü yakın çevresindeki arazi kullanım faaliyetlerinin zamansal değişimi (1975-
2011) ve göl ekosistemlerine etkileri. Türk Coğrafya Dergisi, (61), 31-44. 

26. https://kulasalihligeopark.com/marmara-golu/ 
27. Kaplan, G., & Avdan, U. (2017). Water extraction technique in mountainous areas from satellite images. Journal 

of Applied Remote Sensing, 11(4), 046002. 
28. Hossen, H., Ibrahim, M. G., Mahmod, W. E., Negm, A., Nadaoka, K., & Saavedra, O. (2018). Forecasting future 

changes in Manzala Lake surface area by considering variations in land use and land cover using remote sensing 
approach. Arabian Journal of Geosciences, 11(5), 1-17. 

29. Yang, X., Qin, Q., Grussenmeyer, P., & Koehl, M. (2018). Urban surface water body detection with suppressed 
built-up noise based on water indices from Sentinel-2 MSI imagery. Remote sensing of environment, 219, 259-
270. 

30. Chen, T., Song, C., Ke, L., Wang, J., Liu, K., & Wu, Q. (2021). Estimating seasonal water budgets in global lakes by 
using multi-source remote sensing measurements. Journal of Hydrology, 593, 125781. 

31. Worden, J., & de Beurs, K. M. (2020). Surface water detection in the Caucasus. International Journal of Applied 
Earth Observation and Geoinformation, 91, 102159. 

 
 

 
© Author(s) 2022. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://kulasalihligeopark.com/marmara-golu/
https://creativecommons.org/licenses/by-sa/4.0/


Advanced Remote Sensing, 2022, 2(1), 16-22 
 

16 
 

 

Advanced Remote Sensing 

 
http://publish.mersin.edu.tr/index.php/arsej 

 
e-ISSN 2979-9104  

 

 
 

Determination of city change in satellite images with deep learning structures 
 

Mustafa Emre Dos *1  

 
1 Hatay Mustafa Kemal University, Department of Architecture and Urban Planning, Hatay, Türkiye, 
mustafaemre.dos@mku.edu.tr  
 
 
 

 
Cite this study: Dos, M. E. (2022). Determination of city change in satellite images with deep learning 

structures. Advanced Remote Sensing, 2(1), 16-22 
 
 

 

Keywords  Abstract 
Remote Sensing 
Deep Learning 
Classification 
Change Detection 
 
Research Article 
Received: 23.05.2022 
Revised:  19.06.2022 
Accepted: 24.06.2022 
Published:30.06.2022 
 

 Uneven urban growth is a major problem worldwide as it causes serious losses in vital 
areas such as farmland and water bodies. In this context, the management of the factors 
such as agriculture, industry, housing, etc. of the cities as a whole and the studies carried 
out for the planning should be followed in real life.   Change detection based on remote 
sensing images plays an important role in the field of remote sensing analysis and is 
widely used in many areas such as resource monitoring, urban planning, disaster 
assessment, etc.  However, the detection of changes in the same areas from satellite 
images at different times makes it difficult to interpret and detect them with human 
capabilities due to their dense information content. Recently, with the developments in 
computer vision technology, deep learning structures have come to the fore in the 
interpretation of satellite data. In this study, using the Onera Satellite Change Detection 
(OSCD) data set, change detection from satellite images of different dates belonging to 
the same regions was tried to be extracted with deep learning structures. 

 
 
 
 
 
 

1. Introduction  
 

With the increasing amount of population in the world and in our country, limited resources should be used 
effectively and correctly.  Effective resource utilization can be achieved by using appropriate statistical 
information of regions such as building density, industrialization rate, road network indicators, proportion of 
informal settlements in the region and others in urbanization models. These parameters can be applied to develop 
future urban growth scenarios and use them in the decision-making process [1-3]. In the creation of regular 
urbanization models, remote sensing data are frequently used today thanks to the monitoring of large areas and 
the data provided in different spectral bands [4,5]. At the same time, for the real-life monitoring of these models, 
change detection can be made thanks to the temporal series of remote sensing data.  Today, there are many details 
in the images of objects used in remote sensing. Because of this density of detail, classifying and then interpreting 
this data is just as important as obtaining the data.  However, detecting changes from what is given remote sensing 
is a challenging task due to the complexity of dimensions and details.  

Deep learning structures have recently become popular again thanks to the powerful solutions they offer in 
many areas [6-9]. In this context, it is a powerful alternative to the problem of detail confusion caused by the large 
size of the remote sensing data for change detection. Before the prevalence of deep learning, the problem of change 
detection was mainly solved by handmade features derived from complex feature extractors. The poor 
expressibility of features extracted by traditional methods significantly reduces the accuracy of change detection 
and is sensitive to the effects of factors such as seasonal change, lighting conditions, satellite sensors, and solar 
altitude angle. In general, traditional methods that require expert knowledge are typically not optimal, and 
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empirical features are poor at representing images [10]. Unlike traditional methods, deep learning methods 
extract features from images in spectral and semantic relationships, thereby bringing high accuracy and 
automation. Thanks to these innovative features, deep learning structures are seen as a good alternative to the 
problem of change detection in remote sensing.  However, pixel-wise annotated change detection datasets are 
available that can be used to train supervised machine learning systems that detect changes in image pairs, such 
as the Onera Satellite Change Detection (OSCD) dataset and Air Change dataset [11]. 

Previous studies are based on statistical estimation methods and classical machine learning methods such as 
the support vector machine [12]. In later studies, convolutional neural networks (CNNs) have been proposed to 
detect the difference between two images using patch images [13]. Daudt et al. [14] introduced two Siamese 
extensions of fully convolutional networks trained from scratch to end, leaving behind the latest technology for 
change detection in both accuracy and inference speed without the need for finishing. Notable among these 
modifications is the transformation of the fully convolutional encoder-decoder paradigm into a Siamese 
architecture that uses hop links to improve the spatial accuracy of outputs.  Jaturapitpornchai et al. [15] proposed 
in detail a U-Net-based network that detects new building construction in developing regions using two SAR 
images captured at different times. Later, the U-Net architecture was expanded with a few changes in other works.  
Hamdi et al. [16] ArcGIS has developed an algorithm using a modified U-Net model for automatic detection and 
mapping of damaged areas in the environment.  The study areas were trained based on a database of a forest area 
in Germany.  Khusni et al. [17] proposed a method that combined a BiLSTM structure with a CNN structure based 
on Unet [18]. The proposed architecture first inferres features with the CNN structure and keeps the extracted 
feature in memory with the BiLSTM structure and predicts whether there has been a change as a result product. A 
high accuracy was achieved in this study, but the process complexity is many. Lin, Y. et al. [19] proposed a two-
sided convolution network to detect changes in bitemporal multispectral images. They trained the model with two 
symmetrical CNNs that could learn feature representations. They applied the outer matrix product to the output 
feature maps to obtain combined known properties. The Softmax classifier was applied to produce the detected 
change results.  Zhang et al. [20] proposed a new FDCNN-based CD approach, in which sub-VGG16 was used to 
learn deep features from remote sensing images, FD-Net was used to create feature difference maps, and FF-Net 
was used to combine these maps by training with a small number of pixel-level samples.  However, the network is 
not easily applicable because high pixel resolution samples are desired. 

In many remote sensing applications, remembering the necessary training data and rebuilding models is too 
expensive or impossible.  Transfer learning is defined as the ability to extract information from one or more source 
tasks and apply it to a new or target task [21]. Venugopal et al. [22] they resorted to a ResNet-101[23] network as 
a pre-trained model and fine-tuned the parameters based on an enlarged convolutional neural network that 
detected changes between the two images. Then, the classified result is determined as unchanged and changed 
areas from the final feature map. Fang et al. [24] He proposed a new hybrid end-to-end framework called the 
binary learning-based s edge framework (DLSF) for change detection from very high resolution (VHR) images. 
This framework consists of two parallel flows, binary learning-based domain transfer and Siamese-based 
exchange decision. The first way aims to reduce the domain differences between the two paired images and 
preserve the internal information by translating it into each other's domain, while the second way aims to learn a 
decision strategy to decide on changes in the two areas respectively. 

Deep learning methods have come to the agenda again with the development of technology. However, with the 
developing technology, the hardware and software requirements needed have increased and the costs have 
increased. Due to rising costs, the advantages of remote sensing platforms cannot be fully emphasized. Cloud 
systems have come to the agenda as a solution to these reasons. Large companies such as Google and Amazon 
provide their users with great hardware advantages thanks to cloud systems. 

When the literature is examined, a general solution for the problem of change detection cannot be presented. 
Within the scope of this study, the performance of deep learning methods for the problem of change detection 
from remote sensing data was evaluated and in the light of the results obtained, it was tried to pioneer future 
studies. In the deep learning method selected for this study, unlike the transfer learning method, end-to-end 
training was performed from the ready-made data set, and it was tried to get rid of heavy initial values and feature 
learning of different areas. Another aim of this study was to use a cloud system as an alternative to desktop 
computers that require high-cost hardware requirements that allow the use of deep learning structures, and its 
performance was evaluated. 
 

2. Material and Method 
 

In this study, the architecture based on Unet, which has little complexity and can learn to perceive changes only 
from change-perceptive datasets without transferring any pre-training or learning from other datasets, is used for 
change detection [12]. The architecture used is shown in Figure 1. Thanks to the easy use developed by Google, 
the Pytoch library was used as a library. A proposed pre-labeled dataset for OSCD change detection was used as 
the data set. Google Colab cloud system was selected as the working environment and Graphic Process Unit (GPU) 
and Central Process Unit (CPU) systems offered were compared. Tesla T4 was used by the GPU.   
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Figure 1. Schematic of the proposed architecture for urban change detection. Block color legend: blue is 
ReLu+convolutional, yellow is max pooling, res is concatenation, purple is transpose convolutional 
 
 

2.1. Deep Learning Architecture 
 

In this study, the Early Fusion (EF) architecture presented in [8] was used. In architecture, patch images are 
output at 96x96 sizes. The EF architecture takes two image patches from different dates and combines them before 
migrating them to the network, treating them as different color channels. The proposed architecture is based 
directly on the Unet model and is referred to as Fully Convolutional Early Fusion (FC-EF). Thanks to the 
convolutional layers in the architecture, it learns the low, medium and high characteristics from the given image, 
as in Figure 2. It includes only four maximum pooling and four supersampling layers instead of five layers to 
prevent overfitting after convolutional layers. The tiers in FC-EF are also shallower than their U-Net equivalents. 
Finally, the architecture departs from the softmax layer and classifies the entire image as to whether there has 
been a change or no change. 
 

 
Figure 2. How to convolutional layers extraction to feature from given image [25] 

 
 

2.2. Dataset  
 

OSCD dataset addresses the issue of detecting changes between satellite images from different dates. It 
comprises 24 pairs of multispectral images taken from the Sentinel-2 satellites between 2015 and 2018. Locations 
are picked all over the world, in Brazil, USA, Europe, Middle East and Asia. For each location, registered pairs of 13 
band multispectral satellite images obtained by the Sentinel-2 satellites are provided. Images vary in spatial 
resolution between 10m, 20m and 60m. Pixel-level change ground truth is provided for all 14 training and 10 test 
image pairs. The annotated changes focus on urban changes, such as new building or new roads. These data can 
be used for training and setting parameters of change detection algorithms. 
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Figure 3. From left to right: image from 2015, image from 2018 and labelling change image 
 
 
 

3. Results  
 

All stages of the training were carried out in the Google Colab cloud environment. The training and testing 
phase with the Google Colab GPU lasted 3.5 hours. The training and testing phase with the Google Colab CPU lasted 
approximately 5.5 hours. The general accuracy and loss values of the training and testing phases performed in 
both environments are presented in Table 1. The results obtained from the Google Colab GPU and CPU at the end 
of the test phase are presented in Figure 4. In the images given as GPU and CPU outputs shown in the Fig. 4, the 
pink pixels are labeled as the places where the algorithm predicts correctly, the white pixels are the places that 
the algorithm cannot predict but the places that the algorithm cannot predict, and the green parts are labeled as 
the places where the algorithm predicts the change as not changing. 
 
Table 1. Results obtained as a result of training as GPU and CPU 

Items Total Accuracy (%) Total Loss 

GPU 94,72 0,1132 

CPU 90,59 0,2134 

 

 
 
 

4. Discussion 
 

As a result of the study, it was seen that the experiment with the GPU gave better results when the general 
accuracy was considered, but there were no large result differences between the GPU and the CPU. In temporal 
performance, the Tesla T4 GPU system, which was used as expected, performed almost twice as well as the Google 
Colab CPU. However, considering that Google Colab offers 12 hours of GPU support, it seems that the Google Colab 
CPU will be enough unless there are very demanding tasks. 

When the output images obtained as a result of the test process are examined, it is seen that the proposed deep 
learning architecture has achieved a good accuracy in general. The green pixels in the output images are regions 
where there is no change, but which the architecture perceives as a change. When the areas where green regions 
are concentrated are examined, the algorithm estimated that the reflection values changed in these areas, but it 
was seen that there were differences in the reflection value instead of the change in agricultural areas and building 
roofs. The white areas in the output images are different places where the algorithm cannot detect changes. When 
white areas are examined, it is thought that the algorithm loses its contextual continuity due to low pixel 
resolution. 

In the light of the results obtained, high accuracy has been achieved in the resulting products thanks to the 
advantages of CNN-based deep learning architectures such as automatic extraction of features from remote 
sensing data, unlike classical machine learning methods for change detection. In addition to statistical 
relationships from remote sensing images of classical methods such as support vector machines, the learning 
process was used more effectively thanks to semantic relationships. The deep learning architecture used was 
trained from scratch end-to-end with the OSCD dataset and no initial weight was taken. In this way, as in transfer 
learning methods, output products independent of the semantic differences of the weights previously trained with 
different data sets were obtained. 



Advanced Remote Sensing, 2022, 2(1), 16-22 
 

20 
 

     
     

     
     

     
     

     
     

     
     

     
     



Advanced Remote Sensing, 2022, 2(1), 16-22 
 

21 
 

     
     

     
     

     
     

     
Figure 4. From left to right: image from 2015, image from 2018, labelling change image, output of GPU and output 
of CPU 
 
 

5. Conclusion  
 

In this study, deep learning algorithms were tested as software architecture and Google Colab cloud system as 
hardware deficiency for change detection problem. In the light of the results obtained, deep learning algorithms 
have achieved high accuracy in contrast to previous classical machine learning methods and have shown that there 
is a good alternative solution. It is necessary to have high processing power in order to run deep learning 
algorithms. In order to reduce the cost of this vulnerability, the performance of the Google Colab cloud 
environment has been evaluated and it is thought that this problem can be overcome when the results are 
examined. The biggest problem with deep learning architectures is still the lack of a data set with label images 
covering all areas. If deep learning architectures are to be preferred for the detection of differences, instead of 
making a total inference, it is thought that it will be healthier to examine issues such as the extraction of details 
such as buildings, roads, trees, etc. in terms of the effectiveness of deep learning architectures in contextual 
inferences. 
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 In this study, the accuracy performance of crop detection through classification was 
investigated in the integration of Sentinel-1 Vertical-Vertical (VV) and Vertical-
Horizontal (VH) polarized Synthetic Aperture Radar (SAR) and Landsat-8 satellite 
images belonging to a single date. A study area was selected from a region with dense 
agricultural lands within the boundaries of Manisa, Turkey. Wheat, Tomato, Corn, 
Corn_2, Cotton, Grapes, Clover and Olive Trees were determined as the crop types. 
Feature level integration was used to generate image stack and random forest (RF) 
machine learning algorithm was used for image classification. Classification was carried 
out using only Sentinel-1 SAR data, only Landsat-8 optical data and the merged data set 
of Sentinel-1 VV+VH and Landsat 8. Image stacking of Sentinel-1 VV+VH and Landsat 8 
increased the classification accuracy. The highest overall accuracy (81.46%) was 
achieved through classification based on the stacked dataset of the Sentinel-1 VV+VH 
bands and the Landsat-8 optical bands. The study has shown that the stacked dataset of 
Sentinel-1 VV+VH and Landsat-8 belonging to a single date has great potential in 
extracting summer crop types. 

 
 
 
 
 
 

1. Introduction  
 

One of the most common uses of earth observation satellites is the detection of agricultural products [1-2]. The 
information provided by thematic maps obtained from satellite images is very useful for the effective management, 
monitoring, decision making and computing the statistics of the crops produced in agricultural areas [3-4]. 

Remote sensing applications in agriculture are performed using the optical and Synthetic Aperture Radar (SAR) 
images [5-6]. Crop detection is among the most common uses of satellite images in agricultural areas. Although 
significant progress has been made in classification and crop detection using the optical satellite images, it is not 
always possible to find images of the desired dates and therefore to extract the necessary information due to 
constraints, such as cloud cover and temporal resolution. Unlike optical satellites, SAR satellites employ active 
sensors that provide their own energy for image acquisition. Among the important advantages of SAR satellites 
are that they are not affected by the weather conditions and have the ability to receive images day and night. For 
this reason, the use of radar images in the detection of crop types in agricultural areas is becoming more common 
day by day. 

Due to various limiting effects, the combined use of optical and SAR satellite data sets has become inevitable. 
Their combined use, which is prominent in distinguishing different crop types, increases the interest in 
agricultural studies [7]. Many studies have been conducted to classify agricultural areas and detect agricultural 
crops from satellites with different sensors [8-9]. 
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Remote sensing data acquisition is very expensive in terms of time and cost analysis. In this respect, the 
availability of Sentinel and Landsat satellite images free of charge is very important as they eliminate this difficulty. 
In addition, Landsat-8 satellite stands out with its wide use in many different areas in terms of its rich band 
number, providing images with different spatial resolutions to users, and low temporal resolution feature of 
Sentinel-1 satellite enables images to be used in a short time. With these features, agriculture has become one of 
the most common usage areas of Sentinel-1 and Landsat-8 images. The use of Sentinel-1 images is of particular 
importance for crop pattern detection in regions where it is difficult to obtain clear optical images or where a 
sufficient number of images cannot be obtained [8-11]. 

Based on the literature search on the related subject, [12] fused the Sentinel-1 SAR image dated April 15, 2018 
and April 22, 2018 and Landsat-8 OLI bands dated April 26, 2018 using Decision Level Fusion (DLF) technique and 
performed classification using the Support Vector Machines (SVM) algorithm. In their study, SAR VV+VH polarized 
bands were used. The effect of the speckle filter on the results was also measured in the study. In the classification 
performed using the bands fused with DLF technique without applying a speckle filter, 96.02% overall accuracy 
and 0.9515 kappa coefficient were obtained. It was observed that the speckle filter reduces the classification 
accuracy and texture properties produced from the VH polarized band outperformed those produced from VV 
polarized band. 

In the study of [13], resolution merge and The Local Mean Variance Matching (LMVM) data fusion techniques 
were compared using the Sentinel-1 SAR image dated February 25, 2015 and the Landsat-8 OLI image dated March 
18, 2015. As the images, the VV and VH polarized bands of Sentinel-1A were used. Four datasets, Sentinel-1A SAR, 
Landsat-8 OLI, Resolution merge (Sentinel-1 + Landsat 8) and LMVM (Sentinel-1 + Landsat 8), were used in 
classification performed using the Maximum Likelihood (ML) algorithm. Based on the results obtained, 58.50% 
overall accuracy and 0.48 kappa coefficient were calculated when using only Sentinel-1A SAR data, 67.16% overall 
accuracy and 0.59 kappa coefficient accuracy values were calculated when using only Landsat 8 OLI data, and 
79.75% overall accuracy and 0.75 kappa coefficient values were calculated when using the fused data set of 
Sentinel-1 and Landsat-8 based on resolution merge. In the classification performed using Sentinel 1 + Landsat 8 
data fused with the LMVM technique, 59.84% overall accuracy and 0.52 kappa coefficient values were calculated. 

In the study of [14], 2.75 m resolution TerraSAR-X and 30 m resolution Landsat ETM+ images were fused using 
high pass filtering (HPF), Principal Component Analysis with band substitution (PCA) and Principal Component 
with Wavelet Transform (WPCA) image fusion techniques. Then, the fused images were classified by the decision 
tree algorithm. Overall accuracy of 74.99%, 83.12% and 85.38%, respectively, and kappa coefficient values of 
0.7220, 0.8100, and 0.8369 were obtained from the fused images based on HPF, PCA and WPCA techniques. It was 
stated that WPCA is the most suitable one among the fusion techniques used. 

In the study of [15], Landsat 8 and Sentinel-1 SAR image were fused with the RGB Transformation and Brovey 
Transformation methods, and their morphology was extracted to sharpen the appearance of lava flow deposits in 
volcanoes. Sentinel-1 VV polarized band was used in the study. The results were visually analyzed by comparing 
with the figures. According to the results, the images and techniques used showed that the volcanoes can be 
observed continuously in all weather conditions. 

In the study of [16], Sentinel-1 SAR and Landsat 8 OLI images were fused with the Wavelet, Ehlers, Principal 
Component Analysis (PCA) and Gram-Schmidt (GS) methods to distinguish summer crop areas, garden areas and 
orchard areas in the Fergana Valley, Uzbekistan. Images fused with each method were classified using the SVM, 
Nearest Neighborhood (NN), Random Forest (RF) and Naive Bayesian (NB) algorithms. Classification using RF 
algorithm on the data set obtained through fusing with the Ehlers method gave the highest overall accuracy of 
85.9%. 

In the study of [17], paddy crops were detected using the classification of the Normalized Difference Vegetation 
Index (NDVI) bands derived from Sentinel-1 SAR and Landsat 7 Enhance Thematic Mapper-Plus (ETM+) and 
Landsat 8 OLI images in Heilongjiang, China. In their study, SAR VV and VH bands and NDVI bands were used 
together by means of fusing them. The classification was performed using the SVM and RF algorithms. 
Classification of SAR data in the VH polarized state based on RF algorithm provided the best results with an overall 
accuracy of 0.94 and a kappa coefficient of 0.93. 

In the study of [18], classification was carried out using the RF algorithm on the fused 12 Sentinel-1A, -1B SAR 
and Landsat-8 data collected at different times in 2015 and 2016 in Sub-Saharan Africa, inside and outside the 
residential areas. The VV and VH polarization bands of the SAR data were used. It was stated that the VV 
polarization band performed better than VH. Texture features were created and analyzed with Gray Level Co 
Occurrence Matrix (GLCM) in different window sizes. Optical and SAR data were combined using PCA image fusion 
technique. Optical data only, SAR data only, and the fused SAR and optical data were classified using pixel-based 
RF algorithm. It was stated that classification performed on the fused images provided quite high performance 
compared to the others. 

In the study of [19], image classification was performed to find the best land weave in the Pearl River Delta 
(PRD) region of China. In their study, the fusion was carried out between the 30 m resolution Landsat ETM+ and 
75 m resolution ENVISAT ASAR (WSM) image; 10 m resolution SPOT-5 and 12.5 m resolution ENVISAT ASAR (IMP) 
image; 10 m resolution SPOT-5 and 3 m resolution TerraSAR-X image. Image fusion was performed using the Pixel 
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level, Feature Level A, Feature Level B and Decision Level fusing techniques. Classification of the fused images was 
carried out using the ML, Artificial Neural Network (ANN), SVM and RF algorithms. The fused image obtained with 
the Feature Level B technique and the classification made by ML, ANN, SVM and RF algorithms provided better 
performance than other fusion methods (0.92 overall accuracy and 0.96 kappa coefficient). 

In this study, we aim to classify the feature level image stacked Sentinel-1 Synthetic Aperture Radar (SAR) 
(Vertical Vertical-VV and Vertical Horizontal-VH bands) and Landsat-8 data belonging to a single date 
(07.06.2017) using a machine learning algorithm. We investigate the effect of the stacked dataset of single date 
Sentinel-1 and Landsat 8 on the performance of crop classification. The agricultural area located between Salihli 
and Ahmetli districts of the city of Manisa, Turkey was chosen as the study area. As the images, 10 m resolution 
Sentinel-1 VV and VH polarized bands and 30 m resolution Landsat-8 Coastal Aerosol, Blue, Green, Red, Near 
Infrared, Short-Wave Infrared 1 and Short-Wave Infrared 2 bands were used. Image integration was performed. 
RF machine learning algorithm was chosen as the classifier. The detected crops are wheat, tomatoes, corn, corn2, 
cotton, grapes, clover and olive trees that are the most widely planted crop types in the region. The contribution 
of the combined use of the Sentinel-1 and Landsat 8 dataset on the accuracy of crop classification is shown by the 
computed accuracy values. 
 

2. Study Area and Data 
 

An agricultural area with the size of 520 km2 located within the borders of Ahmetli and Salihli Districts of the 
city of Manisa, Turkey was selected (Figure 1). The approximate coordinates of the study area are; 573369.16 m, 
4275559.88 m (North West); 573369.16 m, 4257782.09 m (South West); 603175.50 m, 4275559.88 m (North 
East); 603175.50 m, 4257782.09 m (South East) with the projection information of WGS 84, UTM-Zone 35 N, and 
Central meridian 27. 

In the study area, most of the parcels are cultivated with the summer crops as well as fallow areas and non-
agricultural areas that are not cultivated. The main crops grown in the region are include wheat, tomatoes, corn, 
cotton, grapes, clover, and olive trees.  
 

 
Figure 1. Study area 

 
The Sentinel-1 SAR and Landsat-8 images covering the study area were visually examined and both images 

acquired on the same date (07.06.2017) were selected as image data. VV and VH polarized C bands of Sentinel-1 
SAR and the Coastal Aerosol, Blue, Green, Red, Near Infrared, Shortwave Infrared 1 and Shortwave Infrared bands 
of Landsat-8 were downloaded from the relevant sites [20-21]. The downloaded data files also contain metadata 
information, such as projection, geometric and radiometric correction files, etc. The spatial resolutions of the VV 
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and VH polarized SAR C bands and the Landsat-8 Coastal Aerosol, Blue, Green, Red, Near Infrared, Short-Wave 
Infrared 1 and Short-Wave Infrared 2 optical bands are given in Table 1. 
 

Table 1. Bands and spatial resolutions of Sentinel-1 and Landsat-8 images 
Satellite Band Spatial Resolution (m) 

Sentinel-1 
C band – VV polarization 10 

C band – VH polarization 10 

Landsat-8 

Band 1 – Coastal Aerosol 30 

Band 2 – Blue 30 

Band 3 – Green 30 

Band 4 - Red 30 

Band 5 - NIR 30 

Band 6 – SWIR 1 30 

Band 7 – SWIR 2 30 

 
Farmer Registration System (FRS) is an agricultural database which contains information about the farmers to 

ensure that agricultural supports can be monitored, audited, reported and questioned [22]. In this study, we used 
the existing FRS data as the ground truth reference data. While the spatial information of the FRS data includes the 
location information, the attribute information consists of land registry information such as, province name, 
district name, parcel ID, parcel area, cultivated area, cultivated crop types, etc. 
 
 
3. Methodology 
 

The flowchart summarizing the steps of the method is shown in Figure 2. The method consists of four main 
steps: data preprocessing, image integration, classification and accuracy analysis. First, the necessary 
preprocessing steps were applied to Sentinel-1 SAR and Landsat-8 optical images. Then, the necessary 
arrangements were made on the FRS data so that it can be used as ground reference data. In the second step, 
feature level integration between Sentinel 1 SAR and Landsat-8 optical images was performed through image 
stacking. Parcel-based classification of the stacked image dataset was then carried out using the RF machine 
learning algorithm. As the final step, accuracy assessment of the obtained results was performed. 
 

 
Figure 2. The flowchart of the methodology 
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3.1. Data pre-processing 
 

Preprocessing operations were applied to Sentinel-1 VV and VH polarized data using the Sentinel Application 
Platform (SNAP) software [23]. Apply orbit file, radiometric calibration, speckle filtering (Lee Filter 5x5), 
topographic correction and back reflection db conversion preprocessing steps were performed. With the 
preprocessing applied to orbit file, the correct satellite position and velocity information was obtained by bringing 
up-to-date corrections to the satellite orbital state vectors of the SAR data. With radiometric calibration, the pixel 
values were converted to radiometrically calibrated SAR back reflection values. The speckle noise was reduced by 
applying a 5×5 Lee filter [24-25]. Distortions caused by topography were corrected with terrain correction and 
therefore the image was geometrically brought closer to the real earth. In the back-reflection dB conversion step, 
the back-reflection coefficients without any unit value were converted into dB using the logarithmic 
transformation given in Equation 1 [25]. 
 

𝛽𝑑𝑏
0 = 10 ∗ log10(𝛽0) (1) 

 
Preprocessing for the Landsat-8 optical satellite image consists of producing a layer stack of the bands to be 

used in classification [26]. The VV, VH and VV+VH polarized Sentinel-1 SAR data and Landsat-8 optical image 
obtained after the preprocessing steps are illustrated in Figure 3. 
 

  
SAR data with VV polarization SAR data with VH polarization 

  
SAR data with VV and VH polarization Landsat-8 (True Color - Blue, Green, Red) 

Figure 3. Landsat-8 and Sentinel-1 SAR images after pre-processing 
 

In addition to images, the necessary preprocessing operations were also performed on the reference data (FRS 
data). Parcels smaller than 1000 m2 were eliminated as most of these parcels did not contain a crop. The crops 
grown in the parcels and the spatial data of the parcels (polygon) were associated. 
 
3.2. Integration of Sentinel-1 SAR and Landsat-8 optic images  
 

In this study, we used feature level image integration to combine Sentinel-1 SAR (VV and VH bands) and 
Landsat-8 image (multi-spectral bands) data sets [27]. Our purpose for image integration was to obtain an 
integrated multi-band dataset from the combination of Sentinel-1 SAR image and Landsat 8 optical image. The 
higher spatial resolution Sentinel-1 SAR VV and VH bands were chosen as the first input data, while the lower 
spatial resolution multi-band (7-band) optical Landsat 8 image was chosen as the second input data. Image 
integration was performed using the “Composite Bands” tool of the ArcGIS software. With this tool, one can also 
create a raster dataset containing a subset of the original bands. This is useful if you need to create a new raster 
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dataset with a specific band combination and order [26]. The output raster dataset (in this study feature level 
integrated image) takes the cell size (spatial resolution) from the first raster band (in this study 10 m resolution 
Sentinel-1 SAR-VV and VH bands) in the order of inputs. Therefore, in this case, the spatial resolution of the feature 
level integrated data set has become 10 m.  
 
3.3. Image classification 
 

Image classification was carried out in MATLAB R2019b using the RF machine learning algorithm [29]. RF is 
one of the ensemble algorithms that uses the decision tree as the base class [30]. Before starting the tree 
development process, two parameters must be defined by the user to start the RF algorithm. These parameters 
are the number of variables (mtry) used at each node and the number of trees to be developed (ntree). The RF 
algorithm combines classifications made by many individual decision trees [28]. When the defined number of trees 
(ntree) is produced, the class of the candidate pixel is determined based on the estimation results obtained from 
the ntree tree [30]. In this study, the ntree value was taken as 100, and the mtry value was calculated as 

√numbⅇr of bands following [31]. In the present case, we used a parcel-based classification approach. In parcel-
based classification, pixel groups are created according to certain characteristics of the pixels such as shape, color, 
texture, size, relationship and pattern, and operations are performed on these pixel groups [32-33]. In this study, 
we used the FRS parcel boundaries to define homogeneous pixel groups. For each parcel, the frequencies of the 
classified pixels were calculated and the label of the highest frequency class was assigned to all pixels falling within 
the parcel. Of the 1024 reference parcels, 512 were used as training and 512 were used to test the classification 
accuracy. 

Wheat, Tomato, Corn, Corn_2, Cotton, Grapes, Clover and Olive Trees were defined as the crop types (classes) 
to be classified. As a result of the analysis of the images and FRS data we noticed that there were two types of corn. 
Therefore, corn was divided into two different classes (Corn and Corn_2). The number of parcels and pixels used 
for training and validation are given in Table 2. Image classification was performed using five different image data 
sets and the results were compared. In particular, the effect of the stacked dataset of Sentinel-1 SAR and Landsat-
8 on classification accuracy was evaluated. The image data sets used for classification are as follows: i) Sentinel-1 
VV band only, ii) Sentinel-1 VH band only, iii) Sentinel-1 VV and VH bands together, iv) Landsat-8 data only, and 
v) Stacked dataset of Sentinel-1 VV+VH bands and Landsat-8 data. 

 
Table 2. The number of parcels and pixels used for training and validation 

Agricultural Crop 
Training Data 
(Parcel / Pixel) 

Test Data 
(Parcel / Pixel) 

Wheat 94 37852 94 11473 

Tomato 26 12880 26 4399 

Corn 78 26636 78 10480 

Corn_2 25 7661 25 3628 

Cotton 28 15090 28 7020 

Grapes 202 33996 202 14398 

Clover 8 6027 8 563 

Olive Trees 51 27482 51 11670 

Total 512 167624 512 63631 

Overall total       1024/231255 

 
 
 

4. Results and Discussion 
 

For the accuracy assessment of the classified images, we used a standard error matrix. Since the classification 
was conducted based on parcel basis, we performed accuracy assessment on parcel-basis, therefore. In 
determining the number of test parcels, the study of [30] was taken into account. From the error matrix [34], we 
computed the overall accuracy and Kappa coefficient values. In addition, producer’s accuracy (PA) value and user’s 
accuracy (UA) value were also calculated for each class. The calculated accuracy values are given in Table 3. Figure 
4 shows the graphical comparison of overall accuracy and Kappa coefficient values of the classified outputs. The 
classified images using different data sets are shown in Figure 5 (a-e). 
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Table 3. Classification accuracy values computed based on different data sets. (PA: Producer Accuracy, UA: User 
Accuracy, VV: Vertical-Vertical Polarization, VH: Vertical-Horizontal Polarization) 

Crop Type 

 
Sentinel-1 VV 

 
 
Sentinel-1 VH 

 
 
Sentinel-1 VV+VH 

 
 
Landsat-8 

 
 
Stacked 
Sentinel-1 
VV+ VH and 
Landsat-8 

 
PA (%)  

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA 
(%) 

 
UA 
(%) 

 
PA 
(%) 

 
UA 
(%) 

 
Wheat 

 
48,00 

 
48,42 

 
50,62 

 
51,06 

 
58,62 

 
59,13 

 
60,10 

 
64,55 

 
62,98 

 
68,86 

Tomato 30,57 32,11 32,23 33,86 37,33 39,21 76,16 78,33 73,06 82,08 

Corn 36,76 42,59 38,76 44,91 44,89 52,01 66,28 72,73 78,13 75,54 

Corn_2 22,71 25,64 23,94 27,03 27,73 31,31 81,16 80,58 89,79 88,58 

Cotton 36,04 41,87 38,00 44,15 44,01 51,13 80,72 77,14 81,91 80,34 

Grapes 42,99 47,41 45,33 49,99 52,50 57,90 74,19 74,87 89,27 88,31 

Clover 41,51 39,79 43,78 41,96 50,70 48,60 76,12 77,76 88,60 87,10 

Olive 
Trees 

25,52 29,65 26,91 31,27 31,17 36,21 71,63 73,90 86,65 91,46 

Overall 
Accuracy 

34,12 35,98 41,67 71,18 81,46 

Kappa 
Coefficient 

30,22 31,87 36,92 63,06 76,24 

 

 
Figure 4. Overall accuracy and kappa coefficient values computed based on different data sets 
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(a) Classification based on SAR VV 

data  
(b) Classification based on SAR VH 

data  
(c) Classification based on SAR VV 

and VH data  

  

(d) Classification based on Landsat 8 data 
(e) Classification based on the stacked data set of SAR 

VV + VH and Landsat 8 data 

 
Wheat 

  
Tomatoe 

  Corn 

 
Corn_2 

  
Cotton 

  
Grapes 

 

 Clover  Olive Trees  

Non 
Agricultural 

Areas 
Figure 5.  Comparison of the classifications conducted based on different data sets 

 
 

The overall accuracy of the classification based on Sentinel-1 VV data was calculated as 34.12% and the Kappa 
coefficient value was calculated as 30.22%. For wheat, the PA and UA values were calculated as 48.00% and 
48.42%, respectively. Similarly, these values respectively were 30.57% and 32.11% for tomato, 36.76% and 
42.59% for corn, 22.71% and 25.64% for corn_2, 36.04% and 41.87% for cotton, 42.99% and 47.41% for grapes, 
41.51% and 39.79% for clover, and 25.52% and 29.65% for olive trees. Corn_2 exhibited the lowest PA and UA 
values, while wheat provided the highest accuracy values. 

The overall accuracy of the classification based on Sentinel-1 VH data was calculated as 35.98% and the Kappa 
coefficient value was computed as 31.87%. The PA and UA values for wheat were 50.62% and 51.06%, 
respectively. Similarly, these values respectively were 32.23% and 33.86% for tomatoes; 38.76% and 44.91% for 
corn; 23.94% and 27.03% for corn_2; 38.00% and 44.15% for cotton; 45.33% and 49.99% for grapes; 43.78% and 
41.96% for clover; and 26.91% and 31.27% for olive trees. In the classification based on this data set, corn_2 
exhibited the lowest PA and UA values, while wheat provided the highest accuracy values. 

For the classification based on Sentinel-1 VV and VH bands separately, the values of PA, UA, overall accuracy, 
and Kappa coefficients generally stayed below 50%. This is due to the fact that the VV or VH band is a single-band 
panchromatic data that significantly affects the classification accuracy. It is evident that if only one of the Sentinel-
1 VV or VH bands is used in the classification, the crops grown in this region cannot be reliably detected. 

Comparing the overall accuracy values computed based on the Sentinel-1 VV and VH bands, the VH band 
provided approximately 1.86% better performance than the VV band. Similarly, the Kappa coefficient value 
computed for the VH band was slightly higher than the value computed for the VV band. 

For the classification based on both Sentinel-1 VV and VH bands, the overall accuracy and Kappa coefficient 
values were calculated as 41.67% and 36.92%, respectively. For each crop type, the computed producer’s and 
user’s accuracy values were respectively as follows: 58.62% and 59.13% for wheat; 37.33% and 39.11% for 
tomato; 44.89% and 52.01% for corn; 27.73% and 31.31% for corn_2; 44.01% and 51.13% for cotton; 52.50% and 
57.90% for grapes; 50.70% and 48.60% for clover; 31.17% and 36.21% for olive trees. 

Classification based on the Sentinel-1 VV and VH bands together produced approximately 5% better results 
than using each of these bands alone. These findings confirm the generalization in this study that when there is an 
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increase in the number of bands included in the classification, there is a proportional increase in the classification 
results. 

Classification based on Landsat-8 data only provided 71.18% overall accuracy and 63.06% Kappa coefficient 
value. The PA (60.10%) and UA (64.55%) values computed for wheat were lower than expected. For other crop 
types, the computed PA and UA values are respectively as follows: 76.16% and 78.33% for tomatoes; 66.28% and 
72.73% for corn; 81.16% and 80.58% for corn_2; 80.72% and 77.14% for cotton; 74.19% and 74.87% for grapes; 
76.12% and 77.76% for clover, and 71.63% and 73.90% for olive trees. Compared to Sentinel-1 SAR data (VV, VH 
and VV+VH), the Landsat-8 data provided up to 37% better performance in the overall accuracy. For Kappa 
coefficient, the accuracy increase was about 33% in favor of the Landsat-8 data. For the individual crop types, the 
UA and PA values were approximately 30% higher than that of Sentinel-1 SAR data. Although the spatial resolution 
of the Landsat-8 optical bands is 30 m and the spatial resolution of the Sentinel-1 VV and/or VH bands is 10 m, the 
classification accuracy based on Landsat-8 data was significantly higher than that of Sentinel-1 data. In this respect, 
we can say that the lower spatial resolution multi-band Landsat-8 optical data may be preferred to Sentinel-1 SAR 
data. In addition, our findings showed that the color effect of pixels or objects (agricultural parcels for this study) 
appears to be more important than the size (spatial resolution) factor that the pixels occupy on the ground. 

Classification based on the stacked data set of Sentinel-1 VV + VH and Landsat-8 provided the overall accuracy 
and Kappa values of 81.46% and 76.24%, respectively. Based on the study of [37] we can say that these values are 
sufficient. This data set provided the highest overall accuracy and Kappa coefficient values of the datasets used. 
For the individual crop types, the computed PA and UA values were, respectively as follows: 62.98% and 68.86% 
for wheat; 73.06% and 82.08% for tomatoes; 78.13% and 75.54% for corn; 89.79% and 88.58% for corn_2; 
81.91% and 80.34% for cotton; 89.27% and 88.31% for grapes; 88.60% and 87.10% for clover and 86.65% and 
91.46% for olive trees. It is evident that the use of the stacked data set of Sentinel-1 VV+ VH and Landsat 8 in the 
classification significantly improved the results when compared the use of either of these images. The use of the 
stacked Sentinel-1 VV+VH and Landsat 8 data set in the classification provided much better performance than that 
of using either of these images (Table 3 and Figure 4). 

For the classification based on Sentinel-1 VV, VH, and VV+VH, wheat provided the highest PA and UA accuracy 
values (Table 3). On the other hand, for the classification based on Landsat-8 and the stacked data set of Sentinel-
1 VV+VH and Landsat-8, wheat gave the lowest PA and UA accuracy values. This is due to the presence of 
interpretation elements of SAR and optical images that may be inferior or superior to each other. The 
characteristics of SAR images are different from optical ones. Optical image classification is highly correlated with 
texture and shape information, while SAR image classification relies more on shape information because the 
texture is always blurred and full of noise [35]. In this study, the existence of this situation has been monitored 
only for the wheat crop type.  
 
 

5. Conclusion and Recommendation 
 

This study investigated the effect of the integration of single date (07.06.2017) Sentinel-1 SAR and Landsat-8 
data on the classification performance of agricultural summer crops. The integration of these two data sets was 
carried out at feature level through image stacking and supervised RF machine learning algorithm was used for 
classification. Image classification was performed using different image data sets. Classification conducted using 
the original Sentinel-1 VV or VH polarized bands provided accuracy values about 35%. The use of both Sentinel-1 
VV and VH bands in classification exhibited a marginal effect in the results increasing overall accuracy to 41.67%. 
The results show that a single-date Sentinel-1 SAR VV or VH data is not sufficient in detecting summer crops, at 
least in the area used in this study. Classification based on Landsat-8 data only provided much higher overall 
accuracy (71.18%) than that of Sentinel-1 data. According to [36], this accuracy value is reasonable. This higher 
accuracy value demonstrates that multispectral-bands have considerable contribution to classification of a single-
date image. 

Classification based on the stack dataset of the integrated Sentinel-1 VV + VH and Landsat-8 provided overall 
accuracy and Kappa values of 81.46% and 76.24%, respectively. Among the input image datasets used in this study, 
this data set provided the best results. When used alone, the Sentinel-1 SAR data (VV or VH band) provided 
considerably low accuracy values. However, when combined with Landsat 8 optical image, Sentinel-1 SAR data 
demonstrated a significant contribution to results. 

The FRS data are prepared based on the verbal statements of the farmers.  In order to use FRS data as reference 
data for training and accuracy assessment, it should undergo some editing operations. Those FRS parcels with 
missing or incorrect information such as cultivated area, cultivated crop name, difference between total parcel 
area and cultivated area, etc. can be automatically detected and corrected in the database. 

The use of both Sentinel-1 SAR and Landsat-8 optical images in classification provides the combined effects of 
higher spatial resolution SAR bands and lower spatial resolution multispectral bands. Classification based on the 
stack dataset of the integrated image of these two data sets appears to provide sufficient accuracy values for 
agricultural crop type detection in regions with reasonably large agricultural fields. The study has shown that the 
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stacked dataset of Sentinel-1 VV+VH and Landsat-8 belonging to a single date has great potential in extracting 
summer crop types. 
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 Agriculture has always been in an important position throughout human history. Today, 
the development of technology has accelerated studies to increase productivity in 
agriculture. With the use of remote sensing in agriculture, different crop types in large 
regions could be observed and their differences from each other could be examined with 
a spectral sight. With the observations obtained, instant surface monitoring in the 
agricultural sector makes it possible to perform analyzes. In the study, the paddy fields, 
where the rice product was named at the time of first planting, were examined by remote 
sensing method. Differences in Synthetic Aperture Radar (SAR) observations were 
analyzed between the first crop sowing and harvest time. In addition, in order to check 
the consistency of the results, the differences in the values obtained according to the 
representation of the samples distributed in the field were determined. Considering the 
results, it was seen that the lowest backscatter values were obtained for the paddy fields 
in the 35-day period after the first planting time and these values increased as the 
harvest time approached. There is an approximately 69% change in the lowest and 
highest mean backscatter values. Finally, when the time series analysis is performed 
according to the control samples in the field, it has been determined that the points 
represented by a single pixel have a more irregular distribution comparing the samples 
obtained in the form of polygons. This shows that pixels cannot be evaluated 
independently due to noise in SAR data. 

 
 
 
 
 
 

1. Introduction  
 

Rice is a food source for more than half of the world's population [1]. Paddy fields planted to obtain rice mature 
in about 130 days and become ready for harvest [2]. Agricultural applications such as plant health monitoring, 
estimating water stress, and sensitive classification of different agricultural products are carried out with remote 
sensing satellites [3-5]. Radar satellites have started to be used in this field as much as optical satellites, especially 
due to their advanced features [6]. One of the biggest advantages of radar images is that they do not contain some 
of the restrictions found in optical images. It is not possible to use optical images, especially in bad weather 
conditions. However, radar images work even in cloudy weather conditions [7].  

Radar images can be used in different applications for the detection of water surfaces since they record 
differences in backscatter values according to surface properties [8]. Especially for crop yield, backscatter (dB) 
values obtained in Synthetic Aperture Radar (SAR) system are used [9]. In the paddy fields, water is used 
intensively from the first planting time to the harvest time [10]. There are different studies using SAR backscatter 
values in paddy fields [11-13]. The water level is monitored with the radar backscatter values and the process of 
the rice production in the paddy field can be followed from the moment of sowing to the harvest time. In the study 

http://publish.mersin.edu.tr/index.php/arsej
https://orcid.org/0000-0002-7495-1998
https://orcid.org/0000-0003-1243-8299
https://orcid.org/0000-0003-0474-7518


Advanced Remote Sensing, 2022, 2(1), 34-39 
 

35 
 

of Kim et al. [13] the backscatter values obtained with different radar bands such as X, C and L and different 
incidence angles in rice fields were investigated. As a result of the observations, they emphasized that different 
backscatter values can be found with different incidence angles and emphasized that the values obtained with 
different polarization types may vary according to the period between sowing and harvesting of the product [14]. 
In the study conducted by Phan et al. [12], one of the agricultural regions of Vietnam were examined. As a result of 
a 5-year time series analysis in the study, they concluded that the backscatter values constantly progressed in the 
same profile. They also stated that they could not obtain consistent results when the crop sowing and harvesting 
times were different in the same region [12]. 

The aim of this study is to examine the rice cultivation in the Thrace region between May and October with 
multi-time images obtained from the Sentinel-1 SAR satellite. For that purpose, evaluating and analyzing the 
backscatter values obtained during the period between planting and harvesting according to months is the main 
object of the study.  
 

2. Material and Method 
 

Within the scope of the study, firstly the study area was determined; then Sentinel-1 SAR data, which passes 
through the same region every 12 days, was obtained for the study area. After that, preprocessing steps were 
carried out in order to remove the noise and for the improvement of the image. Then, the obtained images were 
combined and the average backscatter values were examined and the period between sowing and harvesting time 
was examined in the form of a time series table. 
 

2.1. Study Area and Dataset 
 

The İpsala district of Edirne province was chosen as the study area. Edirne province has more than 40% of the 
cultivated paddy fields in Turkey, while the district of İpsala has more than 17% of the cultivated paddy fields in 
Turkey [12]. The data used is the Sentinel-1 SAR satellite data, available free of charge from the European Space 
Agency (ESA). 15 SAR images taken every 12 days at equal intervals from the paddy planting time of May to the 
end of the paddy harvest time of October were used. The study area is shown in Figure 1. In Figure 2, SAR images 
are shown which are used for the study. 
 

 
Figure 1. Study Area 
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Figure 2. SAR Dataset 
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2.2. Data Preprocess 
 

SAR images are not suitable for direct use as they are raw data. For this reason, they must first go through a 
number of pre-processing steps. First, thermal noises in the image are eliminated. Then, orbit files were applied 
for georeferencing. Afterwards, the calibration process was performed in order to obtain the backscatter values 
from the image. Finally, terrain correction was performed for the coordinate correction process and the images 
were ready. The preprocessing steps are shown in Figure 3. 
 

 
Figure 3. Preprocessing steps 

 
After the preprocessing steps, the backscatter (dB) values in the images were recorded separately for all dates. 

After that, Sentinel-1 SAR data were combined to analyze all the data together. A reference master data is needed 
for the stacked data. For this reason, the data dated May 4 which is the sowing time was determined as the master 
image, and all remaining data were selected as slave images. Then, a time-series graph covering all dates was 
obtained and control samples were placed in certain areas of the field as single-pixel and polygon areas, 
respectively. The results were compared over these samples and the process of the paddy fields were examined. 
Control samples obtained as points and areas in the study area are given in Figure 4. 
 

 
Figure 4. Control samples were taken in the field (Respectively, in the left image, the dots represent a single 

pixel, and in the right image, they represent approximately one crop parcel) 
 

3. Results  
 

Backscattering (dB) values obtained from the dataset are given in Table 1. 
 

Table 1. Backscatter (dB) values obtained from the dataset 
Image Acquisition Date 
(2021) 

Maximum Backscatter(dB) 
Value 

Minimum Backscatter(dB) 
Value 

Average Backscatter(dB) 
Value 

4 May  -9.6361 -30.6967 -20.0439 

16 May -7.0947 -34.8829 -23.4318 

28 May 5.8827 -33.2257 -23.0120 

9 June -10.0764 -35.4931 -23.6802 

21 June -11.2858 -34.4223 -22.6449 

3 July -10.4948 -32.1491 -20.5596 

15 July -9.6795 -28.4936 -18.7282 

27 July -10.0417 -32.2956 -19.9034 

8 August -6.5182 -30.7698 -19.3219 

20 August -10.3978 -29.2372 -18.7064 

1 September -8.4526 -28.6447 -17.5985 

13 September -8.3038 -28.3478 -18.0371 

25 September -7.9786 -28.9482 -18.7683 

7 October  -9.1572 -30.4993 -18.4484 

19 October -6.5108 -28.1091 -16.4259 
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Considering the backscatter (dB) values, the lowest average value was -23.6802 on the 9 June, while the highest 
average was -16.4259 after the harvest time which the date of 19 October.  
 

 
 

4. Discussion 
 

According to the results examined in Table 1, while the lowest level of backscattering values was obtained with 
field irrigations after the first planting time, the backscatter values begin to increase as the crop dries up at the 
harvest time and as the drying process takes place. The results we found gave similar results to the study by Phan 
et al. However, in this study, we have determined that analyzing SAR data with a single pixel can yield inconsistent 
results, so it would be more accurate to analyze within one area. 

The time series tables extracted from the control samples obtained from the field are given in Figure 5. 
 

 
Figure 5. Time series plots obtained from control samples (Respectively, samples representing a single pixel are 

used in the left chart, while samples covering the area are used in the right chart) 
 
 

5. Conclusion  
 

In this study, the process of rice, which is an important source of nutrition, from the first planting to the harvest 
time was examined with SAR images. When the obtained results are examined, it has been observed that the 
backscatter values on the radar satellites can determine the stage between sowing and harvesting due to the 
intense demand for water during the growing process of the paddy fields. Again, when examining the backscatter 
values in radar images, it has been seen that choosing a polygon area instead of a single-pixel representation will 
give more objective results by choosing an average value. The reason for this is that the excess noise in radar 
images can detect very different values from each other even in pixels that are next to each other. 
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