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 The prediction of floods, which are widely recognized as one of the most devastating 
hazards on our planet, poses significant challenges primarily stemming from the absence 
of a dependable forecasting model. Following seismic events, floods rank as the costliest 
natural calamity in Turkey. The mitigation of existing challenges can be significantly 
enhanced through the utilization of flow coefficient calculations, which serve as the 
foremost determinant of flood flow dynamics. The extant body of literature encompasses 
a diverse range of methodologies for modelling flow coefficients. However, the majority 
of these methods depend on black-box techniques that lack transferability. The selection 
of the fuzzy SMRGT Method for this investigation was based on its consideration of the 
underlying physics of the event, making it a novel approach. The land use and slope data 
of the Aksu river basin were utilized. The outcomes generated by the model were 
compared to the empirical data. The evaluation of the model's performance 
encompassed various metrics, such as root mean square error, mean absolute error, 
mean absolute relative error, and coefficient of determination. The findings indicated 
that the fuzzy inference system that was proposed exhibited a high level of predictive 
accuracy, as evidenced by an overall coefficient of determination (R2) of 0.998. 

 
 
 
 

1. Introduction  
 

The flow coefficient is a metric that measures the amount of surface water flow in a particular region during a 
precipitation event. The parameter being discussed is highly important in hydrological modelling and plays a 
critical role in designing stormwater management systems and other water-related infrastructure. The estimation 
of the flow coefficient in river basins is of great importance in the field of water resource management. The process 
involves estimating the flow of water in a river or stream, which is a crucial factor in water resource planning, 
decision-making, flood control, water allocation, and environmental preservation. Various techniques are used to 
calculate the flow coefficient in a river basin. These techniques include empirical equations, hydrological 
modelling, and data-driven methodologies. The methodologies rely on different input variables, such as 
precipitation, temperature, land use, topography, and soil properties in the specified research area. There has been 
a growing trend towards the development of machine learning and artificial intelligence techniques to estimate 
flow coefficient in recent times. These methodologies have the ability to effectively manage large and complex 
datasets, resulting in more accurate estimations compared to traditional approaches. 

Surface flow is a result that occurs when climate, topography, and land utilization interact within a hydrological 
basin. Climate change has the ability to change the way precipitation is distributed over space and time, which in 
turn affects the amount and distribution of flow. Changes in land use and slope can have an effect on flow processes, 
which in turn can impact the occurrence of surface flow. It is important to recognize the significant impact of 
human activities in addition to the alteration of climate patterns on the modification of runoff patterns [1]. The 
hydrological processes of river basins are significantly affected by the global implications of land cover and climate 
change [2,3]. The hydrological processes of basins are directly influenced by land-use changes, as these changes 
are closely tied to the characteristics of land cover [4-7]. Regions with high levels of precipitation but limited 
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vegetation are known for their significant and rapid flow. Consequently, these areas are particularly susceptible 
to immediate consequences resulting from alterations in land use. Conversely, regions characterized by reduced 
precipitation and ample vegetation exhibit comparatively diminished and postponed consequences. The veracity 
of this information is corroborated by a scholarly investigation [8]. 

The flow coefficient is affected by various factors, including slope, land use, soil type, and vegetation cover. This 
response will focus on predicting the flow coefficient value based on slope and land use. The slope is an important 
factor that affects the flow coefficient. In general, the steeper the slope, the higher the flow coefficient, as water is 
able to run off more quickly on steep slopes. However, the relationship between slope and flow coefficient is not 
linear, and other factors such as soil type and vegetation cover can also affect the relationship. Land use is another 
important factor that affects the flow coefficient. Different land use types, such as urban areas, forests, and 
agricultural land, have different surface characteristics that affect how water flows over them. For example, urban 
areas typically have large impervious surfaces, such as pavement and buildings, which can increase the flow 
coefficient by preventing water from infiltrating the soil. On the other hand, forests and other natural areas 
typically have more vegetation cover, which can reduce the flow coefficient by increasing infiltration and reducing 
flow. By developing accurate predictive models, we can better understand how water flows through different types 
of landscapes and make more informed decisions about managing and protecting our water resources. 

This study utilizes a unique methodology, first introduced by Toprak [9], to develop a model for the flow 
coefficient of the Aksu River basin. The SMRGT approach is a versatile methodology that takes into account the 
causal relationship between physical factors. This makes it applicable to a wide range of scenarios. The use of basic 
membership functions and the creation of fuzzy rules enables the incorporation of expert knowledge and domain-
specific data. This makes this approach applicable to a wide variety of problem types. As a result, it was considered 
more favorable in this study. 
 

2. Material and Method 
 

2.1. Materials 
 

The Aksu River Basin has been chosen as the focal area for this research, with geographical coordinates ranging 
from 36 to 38 degrees north latitude and 30 to 31 degrees east longitude. The Aksu River spans a distance of 
approximately 370 kilometres, while its mouth exhibits a width of 100 metres. The Aksu River Basin sub-basin, 
which is situated within the Antalya Basin, holds significant importance as a water resource in the region. It serves 
as a crucial supplier of irrigation water for agricultural activities and fulfils the drinking water requirements of the 
local populace. The organization is currently confronted with various challenges pertaining to the management of 
water resources, the promotion of environmental sustainability, and the facilitation of socio-economic 
development. Therefore, it offers a significant domain for scholarly investigation and examination of diverse 
subjects pertaining to sustainable development, water resource management, and environmental preservation. 
 

2.2. Methods  
 

 

2.2.1. Simple membership functions and fuzzy rules generation technique 
 

The development of a fuzzy database model encompasses two crucial stages: the establishment of a 
membership function (MF) and the definition of fuzzy rules (FR). Numerous methodologies and algorithms have 
been suggested for the construction of membership functions (MFs) and fuzzy rules (FRs). The aforementioned 
techniques encompass genetic algorithms [10], artificial neural networks (ANNs) [11], Kalman filters [12], and 
probability measurements [13]. Nevertheless, there has been a lack of comprehensive attempts to optimize both 
MFs and FRs simultaneously. Several strategies have been suggested for estimating the dimensions and 
configuration of multifractals (MFs), as well as the quantity and structure of fractal regions (FRs). Nevertheless, 
the implementation of these strategies requires a significant amount of time and substantial computational 
resources. The process of ascertaining MFs (membership functions) and FRs (fuzzy rules) necessitates a greater 
investment of time and effort in comparison to alternative methodologies. Notwithstanding the utilization of these 
methodologies, it may still be imperative to employ a trial-and-error methodology. 

The estimation of membership functions (MFs) and fuzzy rules (FRs) should ideally have high levels of 
accuracy, intuitiveness, and require minimal data processing. The objective of this study was to determine the flow 
coefficient of the Aksu River Basin using the Simple Membership functions and the fuzzy Rules Generation 
Technique (SMRGT). This methodology was introduced by [9]. This approach requires a small number of key 
values for the membership functions of both input and output variables. As a result, it is easier to use and more 
reliable compared to other methodologies. The SMRGT model offers users the flexibility to choose both the 
minimum and maximum values of the model. This feature enhances its suitability for a wide range of intended 
values. This methodology takes into account the cause-and-effect relationship between physical factors and their 
impacts, making it potentially applicable to different basins or regions. Accurately estimating the flow coefficient 
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in rivers is crucial for efficiently managing water resources, designing water structures, and reducing the risks 
associated with flood disasters. 
 
2.2.2. Model procedure 
 

The following steps can be summarized as the procedure of the model used: 
 

1- The independent variables (inputs) and dependent variables (outputs) were identified. The independent 
variables included the Aksu River basin's land use and slope information, while the dependent variable was 
the flow coefficient. The methodology used in this investigation did not require the data sets to be divided 
into a calibration and testing subset due to its nature. 

2- For each variable, the maximum and minimum values were assigned. These intervals can remain as large 
as desired. For land use (LU) range was (0-100), and the slope (S) was (0 - 90°). 

3- The Membership function for each independent variable was created using five fuzzy sets labelled as very 
low (VL), low (L), medium (M), high (H), and very high (VH) (Figure 1). According to [9], having a large 
number of membership functions can reduce the error of the model, but this can also increase the program 
load, which refers to the volume of processing. The shape of the membership functions (MFs) was 
determined to be triangular, as generally preferred in the literature. 

 
 

 
Figure 1. MFs of the inputs. 

 
4- The Equation 1-9 were used to calculate the key values (K1- K5) and the core value (Ci) of the membership 

functions, the unit width (UW), the symmetrically extended unit width (EUW) for each membership 
function, the value (O) of the two intersecting neighbor membership, and the number of right-angled 
triangles (nu) in the fuzzy triangular set for each independent variable (Figure 2): 

 

𝑉𝑟 = (𝐿𝑈, 𝑆) max − (𝐿𝑈, 𝑆)𝑚𝑖𝑛 (1) 
  

𝐶𝑖 = 𝐾3 =
𝑉𝑟

2
− (𝐿𝑈, 𝑆)𝑚𝑖𝑛 (2) 

  

𝑈𝑊 =  
𝑉𝑟

𝑛𝑢
 (3) 

  

𝑂 =  
𝑈𝑊

2
 (4) 

  
𝐸𝑈𝑊 =  𝑈𝑊 + 𝑂 (5) 
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𝐾4 =  𝐾𝑖 = 𝐶𝑖 + 1 =  (
𝐶𝑖 − (𝐿𝑈, 𝑆)𝑚𝑖𝑛

2
) +  (𝐿𝑈, 𝑆)𝑚𝑖𝑛 (6) 

  

𝐾2 = 𝐶𝑖 − 1 =  (𝐿𝑈, 𝑆)𝑚𝑎𝑥 − ((𝐿𝑈, 𝑆)𝑚𝑎𝑥 −  
𝐾𝑖

2
) (7) 

  

𝐾1 =  (𝐿𝑈, 𝑆)𝑚𝑖𝑛 +  (
𝐸𝑈𝑊

3
) (8) 

  

𝐾5 =  (𝐿𝑈, 𝑆)𝑚𝑎𝑥 −  
𝐸𝑈𝑊

3
 (9) 

 

 
Figure 2. Construction of triangular MFs. 

 
The calculated key values are the inputs of the model for each land use (LU), and slope (S) key values are shown 

in Figure 3 and Figure 4. 
 

 
Figure 3. Key values of the land use (LU). 
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Figure 4. Key values of the slope (S). 

 
5- Once the fuzzification process is complete, the fuzzy rules base is created. The fuzzy rules base is determined 

by taking into account relevant physical conditions such as "IF", "AND", and "THEN", as shown in Figure 5. 
 
 

 
Figure 5. Fuzzy rules generation. 

 
6- The model was implemented using MATLAB software, and the Mamdani algorithm was used as the 

operator. The centroid method was chosen for the defuzzification procedure. Input and output files were 
prepared with a .dat extension and added to the program. The program was then loaded with a .fis 
extension, and a .m extension file was created to run the program. This approach minimized the trial-and-
error process. Finally, a table of the fuzzy set was generated to obtain the model results. Membership 
functions of the model output are shown in Figure 6. 
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Figure 6. MFs of the model output. 

 
2.2.3. Model performance evaluation 

       
 The evaluation of the model results was conducted in order to assess the accuracy and reliability of the SMRGT 

model. The performance evaluation metrics employed encompassed the mean absolute error (MAE), root mean 
squared error (RMSE), coefficient of determination (R2), and Nash-Sutcliffe efficiency (NSE). A NSE value of 1 
signifies an ideal correspondence between the modelled and observed values, while a value of 0 indicates that the 
model predictions are as precise as the mean of the observed values. A negative value of the Nash-Sutcliffe 
Efficiency (NSE) implies that the model's predictive performance is inferior to that of the mean of the observed 
values. The parameters are formally defined in Equation 10-13. 
 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|Ar −  Pr|

𝑛

1

 (10) 

  

𝑀𝐴𝑅𝐸 =  
1

𝑛
 ∑ |

(Ar −  Pr)

Ar 
|

𝑛

1

 (11) 

  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝐴𝑟 −  𝑃𝑟)^2

𝑛

1

 (12) 

  

𝑁𝑆𝐸 = 1 −  
∑ 𝐴𝑟 − 𝑃𝑟𝑛

1

∑ 𝐴𝑟 − 𝐴̅𝑛
1

 (13) 

 
Where Ar is the actual data, Pr is the predicted data, and A (bar) is the mean value of the actual data. 

 
3. Results  
 

The main aim of this study was to determine the flow coefficient value in the Aksu River Basin by employing a 
fuzzy logic model implemented via MATLAB software. The selection of the Mamdani method was made for the 
operating system, with the centroid method being employed for the process of defuzzification. The determination 
of input and output key values involved the utilization of precise mathematical formulas. Based on the SMRGT 
method, it is recommended that the number of rules be equivalent to the model output, specifically the flow 
coefficient, as determined to be 25 in the present study. Upon executing the model, the outcomes were acquired. 
Table 1 presents comprehensive information regarding the inputs and outputs of the model.  
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Table 1. Fuzzy sets. 

Rule No Slope Land use 
Flow 
Coefficient 

Flow 
Coefficient 

MARE 

  Numerical Verbal Numerical Verbal (data) (model)   

1 5.625 Very low 6.25 Very low 0.01 0.00869 0.000 
2 5.625 Very low 25 Low 0.0345 0.044 0.138 
3 5.625 Very low 50 Medium 0.08 0.0835 0.707 
4 5.625 Very low 75 High 0.122 0.125 0.863 
5 5.625 Very low 93.75 Very high 0.162 0.167 0.709 
6 22.5 Low 6.25 Very low 0.2021 0.2 1.112 
7 22.5 Low 25 Low 0.2412 0.25 1.000 
8 22.5 Low 50 Medium 0.28 0.29 0.462 

9 22.5 Low 75 High 0.325 0.33 0.179 
10 22.5 Low 93.75 Very high 0.362 0.375 0.174 
11 45 Medium 6.25 Very low 0.4026 0.417 0.570 

12 45 Medium 25 Low 0.4487 0.46 0.404 
13 45 Medium 50 Medium 0.489 0.5 0.283 

14 45 Medium 75 High 0.525 0.542 0.130 
15 45 Medium 93.75 Very high 0.568 0.58 0.085 
16 67.5 High 6.25 Very low 0.613 0.625 0.355 
17 67.5 High 25 Low 0.652 0.663 0.321 
18 67.5 High 50 Medium 0.675 0.7 0.148 

19 67.5 High 75 High 0.7133 0.75 0.091 
20 67.5 High 93.75 Very high 0.75 0.79 0.068 
21 84.375 Very high 6.25 Very low 0.8 0.83 0.545 
22 84.375 Very high 25 Low 0.812 0.875 0.522 
23 84.375 Very high 50 Medium 0.855 0.917 0.409 

24 84.375 Very high 75 High 0.944 0.958 0.306 
25 84.375 Very high 93.75 Very high 1 0.996 0.036 

 
       Based on the data presented in the table, it is evident that the flow coefficient value varied within the range of 
0 to 1. The highest flow coefficient value recorded was 0.99, which was attained under conditions of extremely 
high land use (98%) and steep slope (87.7°) (Figure 7). Conversely, the lowest flow coefficient value observed was 
0.00832, which occurred when land use was exceptionally low (4.47%) and slope was relatively gentle (4.27°) 
(Figure 8). 
 

 
Figure 7. The maximum value of the output. 

 



Engineering Applications, 2023, 2(3), 254-264 
 

261 
 

 
Figure 8. The minimum value of the output. 

 
       In order to assess the performance of the SMRGT model, various parameters including mean absolute error 
(MAE), root mean squared error (RMSE), coefficient of determination (R2), and Nash-Sutcliffe efficiency (NSE) 
were employed. The outcomes of the statistical comparisons are presented in Table 2, as depicted in Figure 9. 
Furthermore, the comparison was illustrated using a scatter diagram (Figure 10) and a variation plot (Figure 11). 

 
Table 2. Statistical parameters for model testing. 

Coefficient of Determination (R2) 0.98 
Nash-Sutcliffe efficiency (NSE)  0.993 

Mean Absolute Error (MAE) 2% 
Mean Absolute Relative Error (MARE) 10% 

Root Mean Square Error (RMSE) 2.30% 

 

 
Figure 9. Nash Sutcliffe efficiency between actual data and model. 
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Figure 10. Scatter diagram of the data and model. 

 

 
Figure 11. Variation plot of the data and model. 

 
 

4. Discussion 
 

Based on the empirical evidence, it can be observed that there is a negative correlation between the flow 
coefficient and both the slope and land use. Specifically, when both the slope and land use are low, the flow 
coefficient tends to be low as well. Conversely, when both the slope and land use are high, the flow coefficient tends 
to be high. This finding validates the prevailing knowledge that flow coefficients exhibit higher values in regions 
characterized by a greater proportion of impervious surfaces, such as urban areas, while displaying lower values 
in regions with a higher prevalence of vegetation, such as forests or grasslands. In a similar vein, it can be observed 
that regions characterized by gradual inclines exhibit greater flow coefficients in contrast to areas with steep 
inclines. This observation suggests that the model is capable of generating outcomes that closely resemble reality. 
The scatter plot demonstrates that the regression line intersects the horizontal axis at an approximate angle of 45 
degrees. This suggests that the model is unbiased, meaning that it does not consistently overestimate or 
underestimate the predicted values in relation to the observed data. The substantial coefficient of determination 
(R2 = 0.98) indicates that there exists a statistically significant relationship between the model and the data, which 
can be mathematically represented. Furthermore, the model successfully captures the underlying pattern 
observed in the data. The majority of the data points are situated in close proximity to the regression line, 
suggesting a strong numerical agreement between the model's outcomes and the observed data. Figure 12 depicts 
the spatial correlation between the dependent and independent variables in a three-dimensional manner. 
 



Engineering Applications, 2023, 2(3), 254-264 
 

263 
 

 
Figure 12. The 3D variation of the inputs as a function of the outputs. 

 
 

5. Conclusion  
 

The assessment of the model outcomes demonstrated that the SMRGT model, when utilized in conjunction with 
the Mamdani algorithm and the centroid defuzzification method, represents a proficient and pragmatic approach 
for estimating the flow coefficient of the Aksu River Basin. The model has the potential to be applied in various 
domains such as water resources management, water structure design, and flood disaster prevention within the 
region. This is due to its ability to generate dependable estimates of the flow coefficient by utilizing land use 
parameters. In the determination of flow coefficients, it is imperative to consider all pertinent factors related to 
the study area, encompassing meteorological attributes, land utilization, and soil properties, rather than solely 
relying on pre-established tabulated values. Determining the number of variables, fuzzy sets, and the shape of 
membership functions can be easily accomplished. On the other hand, the SMRGT method takes into account the 
physical cause-and-effect relationship, making it applicable to various basins or regions. In future research, the 
SMRGT model has the potential to incorporate various shapes, including trapezoidal, Gaussian, Sigmoid, and 
others. 
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