
Engineering Applications, 2023, 2(3), 279-290 
 

279 
 

 

Engineering Applications 

https://publish.mersin.edu.tr/index.php/enap 

 e-ISSN 2979-9201 

 
 

 

History of ill-posed problems and their application to solve various mathematical 
problems  
 

Davron Aslonqulovich Juraev *1,4 , Ebrahim Eldesoky Elsayed 2 , Juan Jose Diaz Bulnes 3 , 
Praveen Agarwal 4 , Rostam Karim Saeed 5   
 
1University of Economics and Pedagogy, Department of Scientific Research, Innovation and Training of Scientific and Pedagogical 
Staff, Uzbekistan, juraevdavron12@gmail.com  
2Mansoura University, Department of Electronics and Communications Engineering, Egypt, engebrahem16@gmail.com  
3Federal University of Amapá, Department of Exact Sciences and Technology, Brazil, bulnes@unifap.br  
4Anand International College of Engineering, Department of Mathematics, India, goyal.praveen2011@gmail.com  
5Salahaddin University, College of Science, Iraq, rostam.saeed@su.edu.krd  
 
 

 
Cite this study: Juraev, D. A., Elsayed, E. E., Bulnes, J. J. D., Agarwal, P., & Saeed, R. K. (2023). History of ill-

posed problems and their application to solve various mathematical problems. Engineering 
Applications, 2 (3), 279-290 

 

 

Keywords  Abstract 
Ill-posed problems  
Carleman function  
Helmholtz equation  
Approximate solution  
Cauchy problem  
 
Research Article 
Received:11.08.2023 
Revised: 17.10.2023 
Accepted:01.11.2023 
Published:08.11.2023 
 

 

 This study aims to provide an understanding of well-posed and incorrectly-posed 
problems, as well as the developed methods for solving incorrectly-posed applied 
problems in mathematics. The history and significance of incorrectly-posed problems in 
solving various applied problems in the natural sciences are explored in detail. The study 
of methods for solving ill-posed problems has garnered significant interest among 
researchers, who are actively conducting research in this field. The theory of incorrectly-
posed problems is a rapidly developing area in mathematical physics and natural 
sciences.In the practical realm, most problems are ill-posed, requiring decision-making 
under conditions of uncertainty, overdetermination, or inconsistency. The main 
conclusion drawn from this study is that solving incorrectly-posed problems cannot be 
accomplished solely by learning from well-posed problems. 

 
 
 

1. Introduction  
 

The purpose of this study is to explain the theory of correct and incorrectly posed problems, as well as to 
present the methods developed for solving incorrect problems that arise in applied mathematics. The origins of 
ill-posed problems, their significance, and their role in resolving a variety of applied problems in natural science 
are elaborated upon in detail. Currently, the exploration of methods for solving incorrectly posed challenges has 
piqued the interest of researchers worldwide, stimulating an active wave of research. The theory of incorrectly 
posed problems is presently a rapidly developing field in mathematical physics and natural sciences. In reality, 
most practical problems are ill-posed, necessitating decision-making under uncertainty, over determination, or 
inconsistency. The key takeaway is that one cannot learn to tackle ill-posed problems solely from approaching 
well-posed ones.  

A multitude of applied problems such as geophysical, biophysical, electrodynamics, aerodynamics, plasma 
physics can be simplified to equations of mathematical physics. The construction of these equations, which 
adequately narrate specific physical laws, is a solution to an 'inverse' problem. The investigator observes a 
phenomenon and constructs equations whose solutions carry similar properties. The result of this construing 
process is typically based on general laws that enable the formulation of differential relationships. These 
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relationships usually consist of arbitrary functions representing the properties of the physical medium under 
study.  

Hadamard's definition of problem correctness in mathematical physics has been detailed above. When one of 
the conditions 1-3 is not fulfilled, these problems are classified as ill-posed. The Carleman functions, constructed 
in 1926 by Carleman [1], have been instrumental in formulating regularizations and estimating the conditional 
stability of mathematical challenges. 

Significantly, the consideration of ill-posed problems in mathematical physics was first deemed necessary by 
Tikhonov [2-4] while interpreting geophysical observational data. Tikhonov's work showed that reducing a 
problem's number of possible solutions to a compact set generates stability from the existence and uniqueness of 
the solution [2-4]. Prominent scientists have been credited with further developments in the theory and 
applications of ill-posed problems [2-7].  

Upon understanding the physics, these mathematical equations combined with initial and boundary conditions 
can predict the development of a physical phenomenon in space-time. These are known as 'direct' problems. In 
modern science, inverse problems arise when the general form of these equations is known, but the characteristic 
properties of the medium are unknown, thus requiring derivation from observed equation solutions. In 
mathematical terms, these problems must guarantee the correctness of the problem statement. 

The concept of problem correctness for mathematical physics equations was first introduced in the work of  
Hadamard [8]. A problem is considered well-posed if it satisfies three criteria: 1) the problem must have a solution, 
2) the solution must be unique, and 3) the solution must be stable. After establishing the term for correctness in 
mathematical physics problems, J Hadamard gave an example of an ill-posed problem that didn't align with any 
physical formulation of the problem. He demonstrated this with the Cauchy problem for the Laplace equation, now 
known as the classic example of an ill-posed problem.  

The stability requirement in mathematical physics problems implies that any physically defined process must 
consistently depend on the initial and boundary conditions. When problem solutions are sensitive to slight changes 
in the initial data, such problems are deemed as ill-posed. These tend to cause large variations in solutions from 
small changes in the initial data.  
 
2. Evolution of Ill-Posed Problems in Current Mathematical Sciences  
 

The Cauchy problem for the Laplace equation is considered in papers [6-8]. Renowned mathematician 
Yarmukhamedov [9] proposed a method to construct a family of fundamental solutions. This method forms explicit 
formulas to recover solutions of elliptic problems from their Cauchy data on a section of the boundary. Formulas 
that have such properties as known are called formulas or Carleman matrices [9-12].  

In solving mathematical physics problems, the operator's image is not closed, making them unsolvable in terms 
of continuous linear functions. Such issues make the theory of solvability for these problems complex and 
profound. Multiple studies have explored the nature and properties of these problems, along with the numerical 
solutions for some mathematical physics problems. Based on earlier research, the regularization of the Cauchy 
problem for the Helmholtz equation was accomplished. Specific equations' boundary problems and some 
mathematical physics problems' numerical solutions have been considered.  

The Cauchy problem for most elliptic equations has a unique solution, i.e., this problem is solvable for an 
everywhere dense data set of the problem, but this data set is not considered closed. It follows that the theory of 
solvability of similar problems are very complex. In [13-21] one can learn in detail about the nature and properties 
of such problems. Approximate solutions of the ill-posed Cauchy problem for different factorizations of the 
Helmholtz operator are considered in [22–32]. Based on these results, a regularized solution of the Cauchy 
problem was found explicitly for various factorizations of the Helmholtz operator [33–49]. To distinguish between 
correct and incorrect problems, readers are provided with the following works, which contain sufficiently 
necessary information. For example, in works [50-51], integro-differential equations are considered, in which 
numerical results are obtained. Similar methods for solving problems for the Schrödinger’s equation, as well as for 
integral equations, can be found in works [52-61]. The Ulam-Hayers-Rassias stability of some quasilinear first-
order partial differential equations is considered in papers [62-66]. The inverse problem of determining the source 
function in the Riemann-Liouville fractional derivative equation was studied in a joint paper [67]. Nurieva [68] 
considered the problem of constructing two-way multistep methods and their application to solve the Volterra 
integral equation. Islomov and Kholbekov [69-70] solved a boundary value problem for an equation of parabolic-
hyperbolic type loaded with an integral operator of fractional order. Boundary value problems for various 
equations of mathematical physics, as well as for some modified equations, were considered in papers [71-76]. 
Muhammad, et al. [77] found a new algorithm for computing Adomian polynomials for solving the coupled Hirota 
system. Solving the Volterra-Fredholm integral equations using a natural cubic spline function was considered by 
Salim, et al. [78].  

In works [79-80], the regularization of the Cauchy problem for Helmholtz equations, as well as for elliptic 
equations with constant coefficients, was considered.  
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3. Examples of Ill-Posed Problems  
 

We'll provide various examples that illustrate the unpredictability associated with ill-posed problems [81]. 
Consider an operator equation of the first category as given in Equation 1. 
 

=Dv g  (1) 

 
in which D  is a given mapping (operator) from a topographical space V  into another topographical space B . 

Our objective is to discover v V  from a specified B . It's widely accepted that the { , }D g  data we're privy to are 

approximations at best.  
  

Example 1. Assume that in system (1), D  is a matrix with dimension m n . Here are the scenarios to be 

considered:  
 

 1) If m n , It's deducible that a solution to Equation (1) exists, and it could potentially not be singular.  

 2) If m n , then Equation (1) lacks a solution.  

3) If m n=  and det 0D  , we assume that system (1) is solvable regardless of the right term. The inference 

here is that the reverse operator 1D−  (a matrix) exists, meaning it's capped. This indicates the full correctness 
condition is met.  

Now, consider how the problem's solution is dependent upon the fluctuation of the f  vector in the event the 

D  matrix isn't singular.  
Let us detract Equation (1) from the adjusted Equation 2. 

 

( ) =D v v g g + +  (2) 

 
This gives us Equation 3. 

 
D v g =  (3) 

 
This results in Equation 4. 

 
1 1,v D g v D g   − −= =  (4) 

 
However, on the converse side (Equation 5): 

 

D v g  (5) 

 
From these inferred relations, an estimation surface (Equation 6): 
 

1 .
v g

D D
v g

 
−  (6) 

 

This suggests the error is reliant upon the exact constant 1( )D D D −= . We note that for a normalized D  

matrix, namely when condition 1D =  is confirmed, the reverse matrix 1D− - has large entries. This signifies that 

even minimal changes in D  data can trigger significant solution changes to the problem. 
This suggests that a system with an ill-conditioned matrix should likely be deemed pragmatically unstable, 

even if the problem is deemed correctly posed and condition 1D−    is met.  

Consider the following matrix (Equation 7): 
 

1 0 ... 0

0 1 ... 0

... ... ... ... ...

0 0 0 ...

0 0 0 ... 1

d

d

d

 (7) 
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This matrix (Equation 7) is ill-conditioned for large n  and 1d  . Therefore, the reverse matrix includes 

components such as 1nd − .  

For the adjusted matrix, estimate (Equation 6) appears as Equation 8.  
 

( )

1 ( )

D

v D
D

Dv
D

D












−

 (8) 

 

(where 1 1D D−  ). If D  is assumed to be a symmetric matrix and its norm in tandem with the Euclidean 

norm, then (Equation 9). 
 

max min( )D  =  (9) 

 
where maxmin 

max min( )   denote the maximum and minimum eigenvalue of the matrix D .  

 
 Example 2. We hypothesize that   is a sealed region on a plane, ( , )   (Equation 10):  

 
{0 , 0 },    =      (10) 

 

it's assumed that   holds positive value. Further, the function 2( , ) ( )v t C    is called the solution of the 

Dirichlet problem or, speaking under another  -wave equation, if the following conditions are met (Equations 

11-13):  
 

2 2

2 2
0, (in ),

v v

 

 
− = 

   
(11) 

  

(0, ) 0, ( , ) 0, (0 ),v v    = =  
 (12) 

  

( ,0) ( ), ( , ) ( ), (0 ).v v        = =  
 (13) 

 
Here, the functions ( ), ( )     are continuous over the interval 0    . We present separately that the 

solution of problem (11)-(13) is considered to be continuously independent of the initial data { , , }   . It can be 

seen that if   takes an irrational value, then 0, (1 )sinn n n  = = . Using the method of separation of variables, 

we obtain Equation 14. 
 

1 sin sin
( , ) .

sin
n

n n
v

nn

 
 


=

 
(14) 

 
Then, for a sequence of integers ,n n  , the following inequality (Equation 15) is true: 

 
21 .n n n   − 

 (15) 

 
Then (Equation 16)  
 

sin sin( ) ,n n n n       = − 
 

(16) 

 
whence (Equation 17-18) 
 

𝑠𝑢𝑝
𝜉,𝜏∈𝛺

|𝑣𝜗𝑛(𝜉, 𝜏)| > 𝑠𝑢𝑝
𝜉,𝜏∈𝛺

√𝜗𝑛
𝜋

|𝑠𝑖𝑛 𝜗𝑛 𝑣 𝑠𝑖𝑛 𝜗𝑛 𝜉| → ∞,at𝑛 → ∞, (17) 
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𝜑𝑛 = 0,𝜓𝑛 =
1

√𝜗𝑛
𝑠𝑖𝑛 𝜗𝑛 𝜉 ⇉ 0,at𝑛 → ∞. (18) 

 
Moreover, that first two Hadamard’s conditions are not fulfilled, either. For examle, for a rational   the 

solution is not unique and exists only if the functions ( )   an ( )   are connected by some relations.  

 
Example 3. We consider the classical problem posed by J.Hadamard. It is required to find the solution ( , )v    

of the Laplace Equation 19: 
 

0v v v   + =
 

(19) 

 

in the domain 2{( , ) : 0}E   =    satisfies the conditions (Equation 20): 

 
( ,0) 0, ( ,0) ( ) sin ;nv v g A n   = = =

 0nA →  as n→  (20) 

 
Here, under the Cauchy problem is meant the solution of the Equation (19), which satisfies the condition 

(Equation 20). The solution is provided by Equation 21. 
 

( , ) sin sh ,nA
v n n

n
   =

 
(21) 

 

which, if 
1

nA
n

= , becomes very large for 0  , since sh 0 nn e  = .  

As n→ , the Cauchy data approaches zero in ( )C R , and 0v   equals the solution to the equation (*) with 

0v v= = . Since the Cauchy problem (19)-(21), although it has a unique solution, it does not depend continuously 

on the data. From here we are convinced that the Cauchy problem for the Laplace equation (*) is set incorrectly.  
 
Example 4. Consider the issue of numerical differentiation, an incorrectly posed problem since small 

fluctuations in a differentiable function can lead to major errors in the derivative. Assume [0,1]g C  with noisy 

data { , }g , where 0   is the level of noise, we have the estimate (Equation 22). 

 

g g − 
 (22) 

 
The goal here is to reliably estimate the derivative g  , to locate an operation R  to estimate the following error 

(Equation 23). 
 

( ) 0, 0R g g    −  → 
 (23) 

 
This is synonymous to a stable solution for the Equation 24. 

 

2 2

0

: ( ) ( ), : : [0,1] [0,1]; (0) 0Dv v t dt g D H L L g



= = = → =
 

(24) 

 
where   is the independent variable and t  its derivative.  

 When data g , that may contain some noise, is provided instead of g  , finding 1g D g− =  from the data g  

can potentially be problematic, as Equation (24) may not have a solution in 2[0,1]L  if 2[0,1]g L   is arbitrarily 

provided, taking into account only limitations of g g −  , and if [0,1]g C  . Then, g  may significantly 

diverge from g  , irrespective of how small   is.  

 Task: For given { , , }D g , find a stable approximation v  to the solution ( ) ( )v g =  of Equation (24) that 

produces an estimation of the error (Equation 25). 
 

( ) 0v v  −  →  as 0 →  (25) 
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Here, we construct an operator: :R H H →  such that (Equation 26). 

 

( ):v R g   =  (26) 

 
satisfying (Equation 25). Here, R  depends on parameter   and is termed a regularizer when applied to any 

g Y  .  

 
Example 5. We’ll consider a quadratic polynomial of the form (Equation 27):  

 
2 2 1 + +  (27) 

 
This has roots 1 2 1 = = −  - easily computed with the quadratic formula (Equation 28): 

 
2

1,2 1 1 1 1
2 2

b b
c

 
= −  − = −  − = − 

 
 (28) 

 
But, if the last term's coefficient is not exactly one (e.g., 1 + , where   can be any small discrepancy in the 

coefficient), the real solution vanishes for any small 0  , thus making multiple real root-finding a challenging 

task (Equation 29).  
 

1,2 1 1 (1 ) 1  = −  − + = −   (29) 

 
This implies that the problem of finding multiple real roots is considered incorrect.  
 
Example 6. Consider the Equation 30:  

 
2

2
0

d

d





− =  (30) 

 
with boundary conditions ( 0) 0, ( )a b   = = = = .  

 Its solution is given by Equation 31. 
 

1 2sin cosc c  = +  (31) 

 
where 1c  and 2c  constants that are the limits of integration (Here the functions 1 sinc   and 2 cosc   satisfy this 

equation and their linear combinations correspond to Equation 31.  
 Taking into account the first boundary condition, we obtain 2 0c = , and from the second ( ) ,a b  = =  

respectively, we obtain Equation 32. 
 

1
sin

b
c

a
=  (32) 

 
Therefore, we get the following (Equation 33): 

 

1

sin
( )

sin
b

a


  =  (33) 

 
Similarly, if instead of the point a = +  we supply a = , we have (Equation 34): 

 

2

sin
( )

sin( )
b

a


 


=

+
 (34) 

 
And when a  = − , then the absolute difference between 1( )   and 2( )   will be large for small  .  
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 Let's look at another interesting problem: Determining a ship's position from bearing data. When the shore is 
in sight, the navigator measures the angles between north and two known beacons A  and B . The navigator then 
plots these bearings on a map. The ship's position can be determined as the intersection point of the two bearings. 
We therefore need to solve the systems graphically (see, for example, Figure 1) (Equation 35):  
 

11 12 1

21 22 2

,

.

d x d y c

d x d y c

+ =


+ =
 (35) 

 
It is fundamental that the angles were measured with a certain precision, and errors in drawing lines on the 

map are considered inevitable; thus, we can only solve the position problem with an estimated accuracy, which is 
satisfactory for us. 
 

 
Figure 1. Graphical solution of the system. 

 
 Consider the scenario when two beacons are closely positioned, their directions are practically identical, and 
the drawn lines intersect at a particularly sharp angle, basically converging for certain maps (see, for example, 
Figure 2).  

 

 
Figure 2. Lines intersecting at an acute angle. 

 
 Let's delve into an instance when we aim to solve an incorrectly posed problem, specifically, to solve a system 
of equations where the determinant of the system is assumed to be zero. Precisely, this problem bores down to 
either of the following Equation 36. 

 

1,

1.

 

 

+ =


+ =
 (36) 

 
In this problem, we can't definitively determine the ship's position from the two coinciding straight lines from 

the equations 1 + =  and 1 + = , it could be anywhere along the line 1 + = .  

We infer that an incorrectly posed problem can be regularized. Consider the regularization method where we 
aim to find the Equation (35) that has the minimal norm. Assume one of the possible norms is the square root of 
the sum of   and   squares. The problem to solve is to find   and   that minimize the square of the given norm 

2 2G  = +  considering Equations (35) with 1 + = .  

Noting 1 = − , we can simplify 2 2(1 )G  = − + . On considering the derivative of 
G






, it becomes clear that 

G  will be minimal at the point 0,5 =  and 0,5 = . Therefore, from 2 2G  = +  we move from an incorrectly 

posed problem to a well-posed one. But in the practical scenario of navigating a ship's position, this minimal point 
solution doesn't provide an accurate position for the ship. If the method fails to yield a solution, an alternative 
optimal method should be sought.  

Consider employing supplementary information: if the distances to the matching beacons could be estimated, 
these data could be used as additional information. Using a compass, the accurate ship's position on the line 
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1 + =  can be determined. Another method employs supplementary bearing information from a third, distant 

beacon. The intersection of this new azimuth with the previous line 1 + = , gives the desired ship's position.  

Therefore, using the supplementary information method can serve as a proficient regularization method when 
the position problem is ill-posed. In this case, introducing the norm and seeking a solution which minimizes the 
norm, the sequence of well-posed problems tends to the ill-posed problem in the limit.  

There happens to be a variety of methods for handling incorrectly posed problems. Let's look at a specific 
example where we can apply some general theorems, such as finding roots for a polynomial of any degree 
(Equation 37). 
 

1
1 0... .n n

n nd d d  −
−+ + +  (37) 

 
The study presented in this work sheds light on ill-posed problems in the context of solving applied physical 

problems in mathematical physics. In mathematical language, the term "correct" signifies exactness. Additionally, 
based on J. Hadamard's article, the combination "correct task" denotes polite, tactful behavior. However, in order 
to grasp the meaning of the term "impolite", let's consider some examples.  
 
Example 7. Let the following system be given (Equation 38):  
 

100 111,

100 11011 11111.

 

 

+ =


+ =
 (38) 

 
This equation has a unique solution, given by 1 =  and 1 = . Now, let's make a small transformation on the 

right side of the first Equation (37), and get the following (Equation 39):  
 

100 111,11,

100 11011 11111.

 

 

+ =


+ =
 (39) 

 
Similarly, this equation also has a unique solution, with 111,11 =  and 0 = . Therefore, a small change in the 

initial data of the problem leads to a significant change in its solution. We refer to such systems as "impolite" or ill-
conditioned. These systems may describe real objects known to us with some error, and as a result, the solution 
to such a system may not exist.  
 
Example 8. Now let's look at some simple examples. Let the following equations be given (Equation 40-43):  
 

2 1024, =  (40) 

  

3 4, =  (41) 

  

2 8, = −  (42) 

  

1000 0. =  (43) 

 
Equation (39) has a unique solution equal to 10 = . This means that the problem is correct.  

 Now let's pay attention to the Equation (40), which has no solutions to the set of rational numbers, i.e., is 
incorrect. If we expand the class of the considered solutions, i.e., add irrational numbers, then the problem 
becomes correct and its solution will be equal to 

3log 4 = .  

 Equation (41) is also incorrect, i.e., has no solutions for the set of real numbers. And if we mean a complex 
solution, then we get the following (Eqaution 44): 
  

2

ln8 (1 2 )
log ( 8) , .

ln8

i n
n Z




+ +
= − =   (44) 

 
Here, uniqueness is achieved if we mean single-valued branches of a multi-valued analytic function 

2logw = . 

And finally, Equation (42) is also incorrect; here it is impossible to eliminate the incorrectness of the problem.  
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4. Conclusion  
 

This paper shows how ill-posed problems arise, explains how estimation and inference can be carried out in 
ill-posed settings, and explains why estimation in these settings is important to study problems. The paper 
focusses examples that illustrate the issues and methods associated with ill-posed problems.  

In conclusion, this work primarily focuses on the essence of incorrectly-posed problems in applied physical 
problems of mathematical physics. It acknowledges the historical appearance and development of incorrectly-
posed problems in mathematical physics equations. Notable contributions from renowned scientists such as 
Carleman [1], Lavrent’ev [2-4], Tikhonov [5-7], Hadamard [8], Yarmukhamedov [9-12], Aizenberg [13], Tarkhanov 
[14-17], Arbuzov and Bukhgeim [18-21], and others have significantly advanced the field of solving incorrectly-
posed problems. Such problems arise precisely in the processing of the results of physical experiments, which are 
directly carried out in such areas as astrophysics, geophysics and nuclear physics. Furthermore, they have valuable 
applications in fields like medicine, specifically in computed tomography. It is worth noting that despite the belief 
that ill-posed problems lacked physical meaning and were unsolvable, this notion has been disproven. Given the 
wide range of practical problems involving ill-posed problems, it has become imperative to address them and 
develop new methods for their solution.  

The main contribution of this work is that, based on the results obtained from previous works for well-posed 
and ill-posed problems, it provides the necessary information to scientific researchers. For specificity, several 
simple examples are given, which give a clear idea of correct and incorrect problems. This means that solving ill-
posed problems is more difficult than correct problems. That is, this means that we need to find approximate 
solutions. An ill posed problem will often need to be regularized or reformulated before you can give it a full 
numerical analysis using computer algorithms or other computational methods. Reformulation often involves 
bringing in new assumptions to fully define the problem and narrow it down. Tikhonov Regularization (sometimes 
called Tikhonov-Phillips regularization) is a popular way to deal with linear discrete ill-posed problems, which 
violate one of the terms of a well posed problem. Regularization stabilizes ill-posed problems, giving accurate 
approximate solutions-often by including prior information.  
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