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 This study explores the application of machine learning techniques for predicting trip 
purposes in Makurdi, Nigeria, utilizing three advanced algorithms: Decision Tree (DT), 
CatBoost, and XGBoost. The research aims to determine the most effective model for 
predicting household trip purposes based on demographic, socioeconomic, and travel 
data. Model performance was assessed using key metrics, including R-squared (R²), 
Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), revealing distinct 
strengths and weaknesses among the models. CatBoost demonstrated the highest R² 
score of 73%, indicating its efficacy in capturing variance in trip purposes, despite a 
higher MAE (0.353) and RMSE (0.850), which suggest potential for larger prediction 
errors. XGBoost, with an R² score of 72% and the lowest RMSE of 0.545, exhibited a 
balanced performance, providing accurate predictions with minimal error. The Decision 
Tree model, while acceptable with an R² of 68%, MAE of 0.314, and RMSE of 0.615, 
ranked lower in predictive accuracy. The findings advocate for the use of XGBoost as the 
most reliable model for this task. Future research directions include hyperparameter 
optimization and the investigation of ensemble methods to enhance predictive accuracy. 

 

 
 
 

1. Introduction  

The rapid urbanization of cities worldwide has necessitated the development of innovative tools for analysing 
and predicting travel behaviour to support efficient, sustainable transportation systems. Cities like Makurdi, 
Nigeria, are grappling with the challenges posed by increasing population density, limited public transit 
infrastructure, and the need for comprehensive urban planning [1-4]. Understanding how households make travel 
decisions such as choosing destinations, modes of transportation, and trip purposes is crucial for developing 
policies that enhance accessibility, reduce congestion, and promote sustainability [5-7]. To this end, predictive 
models are becoming essential for urban planners, providing actionable insights from large-scale, complex data 
on urban mobility [8-10]. 

In urban transportation studies, trip purpose prediction is a vital aspect of travel demand modelling, 
providing insight into daily travel patterns within a metropolitan region [11-13]. Traditionally, the four-step 
transportation model has been used to understand travel demand and behaviour. However, its reliance on 
aggregated data often limits its ability to capture complex, individual travel behaviours and respond flexibly to 
rapid changes in urban environments [14-20]. This shortcoming has led researchers to explore data-intensive, 
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machine learning-based models that offer fine-grained predictions based on demographic and socioeconomic 
characteristics, facilitating more accurate analyses of individual travel choices [21]. By focusing on specific trip 
purposes (e.g., work, education, shopping, leisure, business), machine learning models offer planners precise and 
adaptable forecasting tools that help guide infrastructure investments, policy development, and transit design [22-
26].  

In recent years, machine learning techniques have increasingly been adopted in transportation research, with 
algorithms like Decision Trees, CatBoost, and XGBoost showing significant promise [27-29]. Decision Tree 
algorithms are widely valued for their interpretability and ability to capture hierarchical patterns in travel 
behaviour, making them particularly useful for predicting trip purposes based on demographic and household 
characteristics [30-32]. Unlike traditional regression models, Decision Trees handle non-linear relationships and 
high-dimensional datasets, providing clear, rule-based classifications that urban planners can easily interpret [33-
36]. CatBoost and XGBoost, on the other hand, are part of a class of gradient boosting algorithms that iteratively 
improve prediction accuracy by combining the predictions of multiple weak learners [37-40]. CatBoost, 
specifically designed to handle categorical data effectively, minimizes prediction bias, while XGBoost has been 
celebrated for its computational efficiency, especially in processing large datasets [41-44].  

Integrating these algorithms in urban transportation modelling offers several advantages. Firstly, they 
support dynamic and responsive modelling, where changes in travel behaviour patterns can be identified and 
incorporated in real time [45-48]. For instance, CatBoost’s unique treatment of categorical variables, common in 
transportation data (e.g., mode choice, income level), makes it suitable for analysing the impacts of socio-economic 
factors on trip purposes, thereby capturing nuanced travel behaviours [49-51]. Furthermore, XGBoost’s 
computational efficiency and accuracy have been successfully applied in high-dimensional transportation studies, 
including origin-destination modelling and mode choice predictions [52-55]. These attributes make both 
algorithms suitable for deployment in rapidly growing cities like Makurdi, where timely, data-driven decisions are 
essential for addressing mobility needs. 

Additionally, as urban centres adopt the concept of “smart cities,” integrating machine learning into 
transportation planning aligns with broader efforts to digitize urban infrastructure [56-58]. Smart city initiatives, 
which emphasize real-time data analysis and predictive modelling, benefit from machine learning’s ability to 
process diverse data streams, such as household surveys, transit system data, and social media feeds, to generate 
insights for transportation planning [59-61]. In this regard, Makurdi’s adoption of a strategic digital city 
framework, where AI-driven insights can guide transportation infrastructure development and policy, illustrates 
how machine learning is reshaping urban mobility solutions in emerging economies [62-64].  

Moreover, with advancements in machine learning, the accuracy and robustness of trip purpose prediction 
models have improved, making them highly suitable for diverse urban settings [65-66]. For example, while 
Decision Trees are straightforward and interpretable, their predictive power is bolstered when combined with 
gradient boosting techniques like those in CatBoost and XGBoost, which iteratively refine predictions [67-68]. By 
implementing these models, this research aims to develop and compare three machine learning techniques—
Decision Tree, CatBoost, and XGBoost—for their effectiveness in predicting trip purposes in Makurdi. The outcome 
will provide urban planners and policymakers with a validated toolset for designing responsive, sustainable 
transportation systems tailored to the specific needs of Makurdi’s population. 

This study addresses the critical gap in trip purpose prediction for emerging cities, contributing to the body 
of research that leverages machine learning for urban transportation modeling. By focusing on Makurdi, a city 
representative of the broader challenges faced by rapidly urbanizing regions in Africa, this research will highlight 
how machine learning techniques can be adapted for localized, scalable solutions in transportation planning. 
Through this, Makurdi could serve as a case study for applying advanced machine learning models in urban 
mobility, providing insights that may benefit similar cities worldwide. 

2. Material and Method 
 

2.1.  Description of Study Area 

Makurdi, Nigeria, serves as the capital of Benue State and is geographically positioned between latitudes 
7°37'60"N to 7°50'20"N and longitudes 80°19'30"E to 80°40'20"E, at an elevation of 93 meters above sea level. 
The town is predominantly drained by the Benue River, which bifurcates it into the northern and southern 
sections, interconnected by two bridges. The economic activities of residents in the Makurdi metropolis primarily 
encompass civil service, commerce, and agrarian peasantry. The population of Makurdi metropolis is estimated at 
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500,797 individuals [69], with the highest density located in the High Level, Wadata, and Wurukum districts [70]. 
The geographical location of the study area is illustrated in Fig. 1. 

 

Figure 1. Location of Study Area 

2.2 Source of Data 

Data for this study were collected through a household questionnaire interview survey conducted in the study 
area from January 2021 to December 2022. The study area was delineated into nine Traffic Analysis Zones (TAZ), 
corresponding to the geopolitical council wards of the city, which include Bar, Walumayo, Fiide, Modern Market, 
Wadata/Ankpa, Central South, Clerk/Market, North Bank, and North Bank 2. Methodologically, this research 
adopts a case study approach employing both qualitative and quantitative techniques [71-73]. Revealed 
preference questionnaires were distributed to households within the Makurdi metropolis to gather data on travel 
demand in relation to the demographic characteristics of the households. Various data collection methods were 
utilized, including online platforms (Google Forms, Survey Monkey, and WhatsApp), email, and in-person 
interviews at residences. The systematic random sampling technique was implemented for the travel survey, 
whereby every third household along designated streets within the study locations was selected for participation. 
The questionnaire comprised items specifically designed to elicit socioeconomic data and current travel 
information from respondents. Key attributes and data types essential for the study included gender, age, 
economic status, the number of household members, the number of vehicles available for use by household 
members, the number and types of driving licenses held by household members, along with other relevant 
household characteristics, which served as dependent variables. 

2.3 Sample Size  

The sample size for this study was determined using the formula proposed by [74], which represents a 
modification of [75] formula. This approach was employed to derive an optimal sample size representative of the 
study area. 

𝑛 =
N

 1 + Nℰ2
                                                                                                  (1) 

Where: 

n = Minimum returned sample size 

N = Population size 

e = The degree of accuracy express as proportion 

ρ          = The number of standard deviations that would include all possible values in the   range 

t = t-value for the selected alpha level or confidence level at 95% 
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2.4 Machine Learning (ML) Models for Trip Purpose Predictive Modelling 

2.4.1 Modelling using Python Programming 

This study utilized three advanced machine learning models: Decision Tree, CatBoost, and XGBoost to 
develop predictive algorithms based on comprehensive household demographic and trip information data 
collected through an extensive survey. Each model was implemented in Python within the Google Colaboratory 
environment, leveraging Python's robust data science libraries. 

The dataset underwent thorough pre-processing steps, including exploratory data analysis, correlation 
analysis, and checks for missing values and outliers. Descriptive statistical summaries were generated to assess 
data distribution and prepare for optimized model training and validation while the target variables are the trip 
purposes such as home-based work (HBW), home-based education (HBE), home-based shopping (HBS), home-
based leisure (HBL), non home-based (NHB) and home-based  other trip (HBO). 

2.4.2 Model Training and Validation 

The dataset employed for model development was structured to include all relevant input parameters for 
efficient modeling and predictive analysis. For optimal training and evaluation, the data was partitioned into 
training and testing subsets, allocating 80% to model training and 20% to testing, executed using the 
train_test_split function from Python’s Scikit-Learn (Sklearn) library. The modeling process utilized a suite of 
Python libraries, including Pandas for data manipulation, Seaborn and Matplotlib for data visualization, Numpy 
for numerical operations, Joblib for model serialization, and Google Colab for cloud-based computation. Fig. 2 
presents the code snippet demonstrating the importation of essential libraries, alongside key functions such as 
mean_squared_error, train_test_split, and StandardScaler applied in model construction and validation. 

 

Figure 2. Importing Important Python Libraries, Modules and Functions 

2.4.3 Model Evaluation and Visualisations 

The models' performance was rigorously assessed using key evaluation metrics, including Mean Squared 
Error (MSE), Mean Absolute Error (MAE), and R-squared (R²) values, providing quantitative insights into model 
accuracy and error distribution. Additionally, visualization techniques were employed to illustrate comparative 
model performance, enhancing interpretability and allowing for a detailed analysis of prediction accuracy across 
models. 

3. Results and Discussion 
 

3.1. Summary of Dataset for Modelling  

The dataset utilized for modeling comprises household and trip-related information from a total of 1,802 
households, where each row represents a unique household sample, and each column corresponds to one of the 
25 collected characteristics. In this dataset structure, 19 variables were defined as independent (or feature) 
variables, with the remaining 6 classified as target (or dependent) variables. Features encompass household 
demographics and travel characteristics such as household size, age, occupation, gender, income level, vehicle 
ownership, and mode of transportation used. The target variables specifically represent trip purposes, including 
categories like home-based work (HBW), home-based education (HBE), and non-home-based (NHB) travel. 
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Key insights from the data revealed that the average household size is 3.65, with a mean employment rate of 
2.01 individuals per household, an average of 1.43 students per household, and gender distribution averaging 2.03 
males and 1.62 females per household. For the purpose of modeling, 7 of these features were selected as the input 
variables to predict the 6 distinct trip purposes, as illustrated in the summary statistics in Table 1. This setup 
enabled the predictive model to efficiently utilize the household and demographic data to classify trip purposes 
accurately 

Table 1. Descriptive Statistics of Dataset Obtained from Questionnaire Survey 

Variables mean std min 25% 50% 75% max 

Household Size 3.65 1.28 1 3 4 4 12 

Employed 2.01 0.79 0 2 2 2 6 

Student 1.43 1.1 0 1 1 2 6 

Unemployed 0.23 0.46 0 0 0 0 2 

Income 72961 35971 0 50000 65000 86000 250000 

Car Ownership 0.42 0.51 0 0 0 1 3 

Motorcycle Ownership 0.23 0.42 0 0 0 0 1 

HBW 4.2 1.74 0 4 4 4 12 

HBE 2.78 2.17 0 2 2 4 10 

HBS 3.11 1.68 0 2 4 4 8 

HBL 0.99 1.3 0 0 0 2 8 

HBO 1.04 1.12 0 0 0 2 4 

NHB 0.82 1.08 0 0 0 2 4 

          Source: Survey Data 

3.2 Pearson’s Correlation Analysis 

A correlation analysis was conducted for each pair of variables within the dataset using Python’s built-in 
correlation functions to quantify relationships. Given the high dimensionality of the correlation matrix, a heatmap 
(Fig. 3) was generated to visually represent the results, facilitating clearer interpretation. The analysis revealed 
correlation coefficients across the dataset ranging from -0.3 to 1.0, with a color-coded bar on the right side of the 
heatmap indicating the intensity of correlation values for each variable pair. This visualization effectively 
highlights patterns of linear dependency within the dataset. 
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Figure 3. Heat Map of Correlation Analysis 

 

3.3 Modelling 

Following pre-processing, the dataset was split into independent (feature) and dependent (target) variables, 
then partitioned into 80% for training and 20% for testing. Subsequently, each of the three models was 
instantiated and trained on the designated training subset to build predictive capabilities.  

3.3.1 Decision Tree Model 

The optimal architecture for the Decision Tree model was determined by systematically evaluating multiple 
tree structures, each parameterized by varying Max_Depth values. Model accuracy and error were quantified using 
R-squared (R²) and Mean Absolute Error (MAE) as performance metrics. A Python code snippet detailing this 
selection process is illustrated in Fig. 4, with corresponding results summarized in Table 2. 

 

Figure 4. Python Code Snippet 
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Table 2. Searching for the Optimal Value of ‘Max_Depth’ Parameter 

Decision Tree Max_Depth Model Testing Accuracy Mean Absolute Error 

1 0.1105 1.131 

2 0.2012 1.075 

3 0.2665 0.958 

4 0.3382 0.876 

5 0.3994 0.772 

6 0.4631 0.688 

7 0.5267 0.6 

8 0.5585 0.536 

9 0.5866 0.484 

10 0.617 0.424 

11 0.64192 0.391 

12 0.6681 0.344 

13 0.6736 0.327 

14 0.672 0.323 
15 0.6737 0.321 
16 0.6815 0.313 
17 0.6815 0.313 
18 0.6815 0.313 

Due to the specific data characteristics in this study, the prediction accuracy of the Decision Tree model 
increased, while error decreased, as the Max_Depth parameter was incremented—up to a depth of 16, where 
accuracy and error metrics stabilized, indicating convergence. Thus, a Max_Depth of 16 was selected as optimal 
for this model. Fig. 5 illustrate the structure of the Decision Tree model at depths 2, for interpretative clarity. The 
full tree structure, extending to 16 levels, captures all variables and decision paths, ensuring comprehensive 
predictions at each terminal node, though it is too detailed to display fully in this document. 

 

Figure 5. Decision Tree Model Structure (From the Root Mode to the Second Level) 
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3.3.2 CatBoost and XGBoost Models 

This study applied multiple advanced techniques to enhance the accuracy of the CatBoost and XGBoost 
models, including feature engineering (logarithmic transformations and data scaling), cross-validation, 
hyperparameter tuning, model regularization, and increasing the number of trees within the models. Given that 
optimal solutions are data-dependent, these approaches were systematically tested, and those yielding the best 
performance were selected for the final models. Hyperparameter tuning, in particular, proved most effective in 
refining model performance. Tables 3 and 4 list the key hyperparameters adjusted for CatBoost and XGBoost to 
achieve optimal accuracy, while Figs. 6 and 7 display corresponding Python code snippets for model building and 
training. 

Table 3. CatBoost and XGBoost Hyper-Parameters Tuned in this Study 

CatBoost Tuning Range XGBoost Tuning Range 

Iterations Positive integers 
Number of trees 
(N_estimators) 

Positive integers 

Learning rate 0.01 to 0.4 Learning rate 0.01 to 0.4 

Depth 4 to 10 Max_depth 4 to 10 
L2_leaf_reg 1 to 10 Reg_alpha 1 to 10 

    Reg_lambda 1 to 10 

The GridSearchCV method, implemented in Python, was employed to systematically explore various 
combinations of hyperparameter values. This technique facilitates the identification of parameter configurations 
that optimize model performance while mitigating the risk of overfitting. By tuning the hyperparameters, the 
method aims to achieve the highest possible accuracy. The optimal parameter settings identified through this 
process are presented in Table 4. 

Table 4. Best Hyper-Parameters by GridSearchCV for the Models 

CatBoost Values XGBoost Values 

Iterations 1000 N_estimators 1000 

Learning rate 0.1 Learning rate 0.2 

Depth 6 Max_depth 6 

L2_leaf_reg 1 Reg_alpha 1 

    Reg_lambda 2 

 

Figure 6. Building the CatBoost Model With Optimal Hyperparameters 
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Figure 7. Building the XGBoost Model With Optimal Hyperparameters 

3.4 Model Performance Evaluation and Visualisations 

The performance of the trained models was subsequently assessed using R-squared, Mean Absolute Error 
(MAE), and Mean Squared Error (MSE), with corresponding Python code snippets illustrated in Figs. 8 to 10 
Additionally, the models underwent validation by applying them to predict outcomes on previously unseen data 
(the 20% test dataset). The performance metrics were computed using the same evaluation criteria, and the 
results are detailed in Tables 5 to 7 for each model. 

 

Figure 8. Code to Evaluate the Performance of the DT Model 
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Figure 9. Code to Evaluate the Performance of the CatBoost Model 

 

Figure 10.  Code to Evaluate the Performance of the XGBoost Model 

Table 5. Performance of the Decision Tree model for Training and Validation 

Performance Metrics Training Validation 

R-squared value 0.841978 0.681508 

Mean Absolute Error (MAE) 0.187717 0.313950 

Root Mean Squared Error (RMSE) 0.301527 0.615197 
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Table 6. Performance of the CatBoost model for Training and Validation 

Performance Metrics Training Validation 

R-squared value 0.8439267 0.7313342 

Mean Absolute Error (MAE) 0.2579396 0.3528039 

Root Mean Squared Error (RMSE) 0.5395861 0.8503091 

 

Table 7. Performance of the XGBoost model for Training and Validation 

Performance Metrics Training Validation 

R-squared value 0.851961 0.722995 

Mean Absolute Error (MAE) 0.224566 0.331785 

Root Mean Squared Error (RMSE) 0.283789 0.545492 

The accuracy results indicate that all three models: Decision Tree, CatBoost, and XGBoost—demonstrated 
satisfactory performance in predicting trip purposes, achieving training accuracies of 84.19%, 84.39%, and 85.2%, 
respectively. Following the testing and validation phase, the models exhibited accuracies of 68.1%, 73.1%, and 
72.3%, respectively. All models displayed acceptably low prediction error values for both training and testing 
scenarios. The high accuracy rates observed in both training and validation phases suggest that the models did not 
overfit the data, instead effectively learning the underlying patterns, thereby ensuring their utility for future 
predictions. Consequently, these models can be considered reliable for estimating household trip purpose 
decisions in future applications. To further analyze and compare the models’ effectiveness for prospective 
applications, their R-squared values and error metrics on the validation dataset were visualized, as shown in Fig. 
11. 

 

Figure 11. Validation Performance of DT, CatBoost, XGBoost 

Based on the results and visualizations: The Decision Tree model attained an R² score of 0.681508, signifying 
that approximately 68.15% of the variance in trip purposes can be accounted for by this model. The Mean Absolute 
Error (MAE) was recorded at 0.31395, while the Root Mean Squared Error (RMSE) was 0.615197. These error 
metrics indicate that, although the model demonstrates reasonable performance, there remains potential for 
enhancement in minimizing prediction errors. CatBoost exhibited the highest R² score of 0.7313342 among the 
three models, indicating its superior capability in capturing the variance in trip purposes. Nevertheless, its MAE of 
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0.3528039 and RMSE of 0.8503091 reveal greater error values compared to the Decision Tree model. The 
relatively elevated RMSE suggests that, while CatBoost generally performs accurately, it may yield larger errors in 
specific predictions. XGBoost achieved a competitive R² score of 0.722995, closely trailing CatBoost. Its MAE was 
measured at 0.331785, and it recorded the lowest RMSE of 0.545492 among the models. This performance 
indicates that XGBoost not only accounts for a substantial portion of the variance in trip purposes but also delivers 
the most precise predictions with minimal error. 

 

4. Discussion 

This study investigated the utilization of advanced machine learning models—namely, Decision Tree (DT), 

CatBoost, and XGBoost—for the prediction of trip purposes based on household and travel data. The models were 

rigorously evaluated using key performance metrics: R-squared (R²), Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE). The results delineate the distinct strengths and weaknesses inherent to each model. The analysis 

indicates that CatBoost, with the highest validation R² score of 0.7313342, is the most effective model for capturing the 

variance in trip purposes. However, its relatively elevated MAE of 0.3528039 and RMSE of 0.8503091 imply that it may 

generate larger prediction errors in certain instances when compared to the other models. XGBoost, achieving an R² score 

of 0.722995 alongside the lowest RMSE of 0.545492, emerges as the most balanced model, providing accurate predictions 

with minimal error. In contrast, the Decision Tree model, while performing satisfactorily with an R² of 0.681508, MAE 

of 0.31395, and RMSE of 0.615197, lags behind both CatBoost and XGBoost in terms of predictive accuracy and error 

reduction. In conclusion, although all three models exhibit potential for predicting trip purposes from household data, 

XGBoost is recommended due to its superior balance of high explanatory power and low prediction errors, rendering it 

the most reliable option for this task. Future research should concentrate on further hyperparameter optimization for these 

models and the exploration of ensemble techniques to enhance predictive performance. 
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