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 Drought and decrease in the level of lakes in recent years due to global warming and 
excessive use of water resources feeding lakes is of great importance and this research 
has provided a structure to investigate this issue. First, the information required for 
simulating lake drought is provided with strong references and necessary 
assumptions. Entity-Component-System (ECS) structure has been used for simulation 
which can consider assumptions flexibly in simulation. Three major users (i.e., 
Industry, agriculture, and Domestic users) consume water from ground water and 
surface water (i.e., streams, rivers and lakes).   Lake Mead has been considered for 
simulation, and the information necessary to investigate its drought has also been 
provided. The results are presented in the form of scenario-based design and optimal 
strategy selection. For optimal strategy selection a deep reinforcement algorithm is 
developed to select the best set of strategies among all possible projects. These results 
can provide a better view of how to plan to prevent lake drought. 

 
 
 
 
 
 
 

1. Introduction  
 

A drought is a period during which a region or area receives less precipitation than usual. Lack of sufficient 
precipitation, whether rain or snow, can result in lessened stream flow, crop damage, decreased soil moisture, or 
groundwater, as well as a general water scarcity. After hurricanes, droughts are the weather phenomena that cost 
people the most.  

Multiple elements (such as the amount of rainfall, the amount of use of the input resources of the lake, the 
pattern of cultivation, etc.) are involved in investigating the phenomenon of drought in lakes [1]. The spatio-
temporal feature of these elements also adds to its complexity. Investigating this phenomenon has several 
dimensions and the environmental, social and governmental effects should also be investigated [2]. Numerical 
design and optimization are used in different fields like engineering design [3,4] and are accepted as a optimal 
design approach [5]. Researchers have tried to investigate this drought in different ways. Some have analyzed it 
qualitatively [6]. And from quantitative perspective, some modeled the drought mathematically [7-9]. Simulations 
using neural network are helpful for a wide range of engineering problems [10]. Another group of researchers 
have used simulation to analyze drought [11-13]. The simulation of this phenomenon is a suitable tool to 
investigate the complex and interdependent nature of this problem and is used in different other complex 
interdependent systems for example in resilience assessment [14], disaster management [15], resource 
management [16] and regional disaster planning [17].   
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Since entire information and internal decision processes cannot be attained, the creation of accurate and 
comprehensive simulation models is further complicated. Therefore, generic drought simulators that let users test 
and apply their own models might be useful. To the best of our knowledge, there is not so much comprehensive 
simulation tool capable of applying complex assumptions in drought of the lakes, considering the appropriate 
elements. This work is trying to provide a simulation tool by examining the elements of a real sample for Lake 
Mead, which involves the spatio-temporal characteristics of different elements and considers the assumptions that 
bring the modeling closer to reality. neural network 

We utilize a model of Lake Mead to show the concepts of the simulator, and it can be assessed by the availability 
of more accurate data through simulation experiments to prove the idea. By employing random distributions for 
each uncertain variable, this model can mimic uncertainties; however, it can be improved following the release of 
more precise data. We chose Lake Mead since it is one of the most significant lakes in the USA that is now 
experiencing a drought. By including random variables and logics in the programming framework used to create 
the simulator, managers may use this simulator to incorporate any required legitimate assumption and 
uncertainty. 

This work's major contribution is to provide the fundamental structure and ideas for a generic, modular lake 
drought simulator, which managers and researchers may use to develop, use, and evaluate their own models. 
Supplying scenario-specific data, such as geo-spatial data related to the lake, is a crucial part for the tool. The 
quality of the input data has a direct impact on the simulation's quality and the results it produces. The tool can 
therefore be referred to as data driven. In short, can provide the following features: 

 
• Capability of simulating different basins, integrating inputs and consumers of each element as well as 

upstream basins feeding the reservoir. 
• Geoplotlib-based visualization toolkit [18] that can visualize time series flows and consumptions (such as 

water flows, agricultural fields and their consumptions, etc.) and provides real information on entities and other 
resources for convenient visual study. 

• The generation of time series outputs and event logs at each time step. 
• Tools for analyzing output data, for example tools that compute several Key Performance Indicators (KPIs) 

including lake surface level, policy effectiveness, and others. 
• scenario analysis based on the advice of the expert and feedback depending on the outcome to help the 

managers make a better decision and optimal strategy selection based on a dep reinforcement learning algorithm.  
 
For the case study, Lake Mead drought is used to build an initial case study (Figure 1). Millions of people in 

seven states, tribal territories, and northern Mexico get water from the biggest reservoir in the United States 
named Lake Mead. Additionally, it currently serves as a striking example of climate change and what may be the 
greatest lake drought in the American West in the past 12 centuries. Water levels in Lake Mead are at their lowest 
point since April 1937, when the reservoir was still being filled for the first time, continuing a 22-year downward 
trend. Only 27% of Lake Mead's capacity was reached as of July 18, 2022 [19].  
 

  
(a) (b) 

Figure 1. Trend of drought and watersheds a) Lake Mead drought trend b) Upstream watersheds in Lake Mead 
 

 

2. Material and Method 
 

The key components of the simulation framework are covered in this section along with more information on 
outputs and a description of the Lake Mead model. 
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2.1. Simulation framework 
 

The simulation framework uses the Entity-Component System (ECS) architectural pattern and its 
implementation [20]. An entity component system is a system made up of three main elements: 
 
• Entities: labels for simulated entities without behavior 
• Components: Substances that provide entities data (properties) 
• Systems: pieces that offer mechanisms for component implementation (e.g., flow patterns, water input, and 
outputs to the resources, policy formulators) 
 

An ECS for a lake drought simulator (DrSim) is shown in Figure 2. Entities in yellow stand in for the simulation's 
objects, such as lakes, basins, and farmlands. Green is used to indicate their components, which offer data 
associated with entities. Lastly, the systems that update the simulation by altering the data in an entity's 
component at each time step are blue. These components are all included in the simulation environment. 
 

 
Figure 2. Simplified drought simulation environment 

 
In this simulation with DrSim, dynamic decisions are made based on the analysis of defined logic and the 

conditions of other components and inputs, and it can evoke the principles of game theory that makes decisions 
based on players. DrSim can be considered as a central controller, which itself acts as a central decision maker for 
the rest of the system agents. 
 

  
Figure 3. Water flow balance between resources and 

consumers 
Figure 4. Watershed diagram in each catchment 

 
Figure 3 and Figure 4 show the flow balance in each watershed. The inputs to the Lake are from the upstream 

catchments or precipitations and each watershed also can transfer water flow to other catchments. The water 
resources for each watershed are from precipitations which directs to ground water or surface water (including 
Streams, river waters and lakes). Consumers are industries, agricultures and domestic users which can supply 
water from different resources based on their logic dynamically. Geo-temporal characteristics of the inputs are 
considered in DrSim which is one of the important characteristics of the simulator that makes the results more 
realistic. This feature allows us to provide detailed analysis based on each specific element. For example, the 
fluctuation of the surface level of a specific lake can be monitored in a time series.  
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The systems in DrSim for making decisions about using water for each consumer are described in the following 
section. The required data are available in different formats like GeoJSON formats feeding DrSim.   

Industry distributor system: Different types of industry consumers (e.g., thermoelectric power, mining etc.) can 
supply their resources based on the available resources nearby. This information is available in The United States 
Geological Survey (USGS) repository [21].   

Agriculture distributor system: Each type of agriculture needs a certain amount of water in different periods 
which can be supplied from different water resources. This information is available in The United States Geological 
Survey (USGS) repository [21].   

Domestic distributor system: Most of the domestic water are from Water treatments nearby the domestic area. 
They have their own logic and resources for distributing water. This information is available in The United States 
Geological Survey (USGS) repository [11] and National Water Dashboard website [22]. 

Visualization systems: Different visualization features can be used to visualize the inputs and outputs 
considering the great capability of python for mapping and providing interactive maps. The log files that track the 
geospatial outputs of DrSim are used to map the outcomes based on the requirements (Figure 5).  
 

 
Figure 5. Interactive analysis for visualization of the outputs 

 
Other optional systems can easily be embedded based on the availability of the data and the importance of the 

logic in the flow balance. For example, maybe the farm market can change the patterns of water consumption in 
agriculture in some places. A system for managing farm market can be added to DrSim by considering ECS concept 
and some extra coding.   

Industry divided to resources (Ground water, Surface water, streams, lakes, and rivers) and consumers 
(industry, agriculture and domestic) based on Figure 3 described in the following section.  

Ground water: Precipitation can feed ground water which are estimated based on the soil characteristics and 
other related parameters [23]. Groundwater resources can feed the consumers from wells and changes in the 
water level of groundwaters are tracked based on hydrodynamic models [24]. 

Surface water: Precipitation makes surface water based on intensity and other related characteristics which 
are estimated based on hydrodynamic models [25]. Surface waters are divided into three subcategories named 
streams, lakes, and rivers. Distribution of surface water in each catchment into these three resources are based on 
hydrodynamic estimation models and their characteristics.  
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Figure 6. Diagram of modules for water distributions 

 

 
Figure 7. Framework and steps in DrSim 

 
Figure 6 shows the required modules in DrSim for distributing water in each catchment. These modules are 

embedded in the model by defining logics based on the hydrodynamic models and logics for consumptions in 
industry, agriculture, and domestic entities.  

Figure 7 shows the framework and steps in a round of simulation and how it can capture Geo-spatial 
characteristics of drought in Mead Lake. There are C(m) upstream catchments feeding Mead Lake. Each upstream 
catchment feeds nearby or downstream catchments to get to Mead Lake as shown in catchment map in Figure 1. 
Each catchment k is simulated in a time frame divided to T(n) period. in each T(k) period, water consumptions are 
calculated based on simulation modules of industry, agriculture and domestic. Then precipitations and water 
resources in that period are updated for ground water and surface water resources. These thread consequences 
in calculation of the final water feeding Mead Lake. A function for the level of water in Mead Lake is used to 
calculate the volume, height, and surface of water in Mead Lake.   

There are some assumptions and logics for the simulation that are based on availability of data and the 
importance of considering those logics in the outcomes. DrSim provides the ability to test different assumptions 
easily by coding them in the body of simulation environment. For example, we can test to see which industry 
entities can change the water level the most and only consider those important ones in the final runs or how much 
detail is needed for simulating agriculture entities.  

Some of the initial logic for simulating drought of Mead Lake are listed here. Note that these initial assumptions 
can be modified based on outputs and feedback.   
 
 

2.2. Considering randomness and uncertainties in DrSim 
 

One of the great features of DrSim is considering distributions for the parameters and inputs or other 
assumptions. Most of the parameters are not known clearly or are not available but there is an estimate or a 
distribution for them. For example, there is no exact data for consumption rate of water in a sensitive industry 
which consumes lot of water but there is an estimate from similar industries can be used for this industry. These 
estimates can be used as a distribution for that parameter and can be updated by availability of data in the future.  
These uncertainties are captured by assigning a distribution to each parameter (if required). Each run in the 
simulation uses a random value from that distribution assigned to that parameter and gives a distribution for the 
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outputs rather than a specific value as a result. Uncertainties may also be for the logics forming a scenario. 
Anomalies also are the events with less probability but high impact in the system. For example, consider a situation 
where water consumption for a specific agriculture product has a distribution mean value of M. Due to the good 
market for this product, M can be doubled with probability of r. Therefore, in each run, if the random variable is 
less than r, then 2M is used for that specific run to consider this kind of uncertainty. This kind of simulation is used 
for precipitation systems where precipitations have a distribution, but they may have some decrease every K year 
named abnormal year based on the data from previous years. This is simulated with the same logic in the body of 
writing codes for each parameter. Figure 8 shows an algorithm for simulating these abnormal precipitations. These 
techniques can be used for other similar concepts based on expert’s opinion.   
 

 

 
Figure 8. Algorithm for simulating abnormal precipitations 

 

 
Figure 9. Diagram of resource constraint logics for agriculture system 

 

 
Figure 10. Algorithm for simulating abnormal precipitations 

 

 
Figure 11. Diagram of resource constraint logics for Domestic system 

 
 
2.3 Considering resource availability and resource-constrained logics:  
 

System elements of ECS concept can treat as decision makers or in the other word, the elements of DrSim 
responsible for handling logics. Capability of simulating different assumptions within the body of each system 
provides the flexibility for logic and scenarios to be resource constrained. It means that each scenario may happen 
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only if a certain amount of a specific resource is available. For example, a specific agricultural product is cultivated 
only if the water level of a nearby river is higher than a certain limit. Otherwise, they may decide to use 
groundwater  resources or not to farm at all or any other reasonable assumption. Figure 9-11 show some of the 
resource constraint logics implemented in DrSim.  
 
3. Scenario setup and Experiment 
 

There are two types of design: Scenario based analysis and designing best strategies. In Scenario based analysis, 
a base case is provided with some basic assumption and the result of other scenarios are compared with the base 
case or other scenarios. Another approach is designing the best strategies with deep reinforcement design. For 
example, each project for reduction of water consumption needs some budget. The question is how we should 
assign this budget to different projects to get to the highest water level of the lake at the end of the design horizon. 
It is a more complicated problem that scenario-based analysis in which the simulation and design should be mixed 
to get the optimum design which is called simulation-optimization design. The optimization part can be based on 
metaheuristic optimizations like genetic algorithm, ant colony algorithm etc. For scenario design section of DrSim 
uses a deep reinforcement learning algorithm on top of the simulation to find the best allocation of budget between 
different strategies.  
 
3.1 Scenario based analysis 
 

Base scenario(B-Sc): In this base scenario, there is not any specific scenario and the base assumption for 
simulation is used based on the algorithm described in Figure 6. This configuration serves as a baseline and the 
subsequent scenarios will be compared to this one. 

Industry water reduction scenario (In-Sc): In this strategy, only Industry consumers reduce their consumption 
and the effect of these policies are tested and compared to the base case based on available resources [26]. 
Different combinations of industry consumers are tested in this scenario.  

Agriculture water reduction scenario (Ag-Sc): Agriculture water consumers use a major water input and 
understanding how each type of product can change the water level of the lake is important. In this scenario, some 
types of agricultural products are not planted or are planted less so that the amount of lake level change in the 
design period can be checked [27].  

Domestic water reduction scenario (Dom-Sc): The government can reduce the amount of Domestic water by 
developing public water conservation actions and encouraging plans to reduce urban water consumption or 
investing in the supply of fresh water from other sources [28]. Some of these strategies are selected and the 
changes in the lake water level are checked by applying these policies.   

Combination reduction scenario (Com-Sc): Based on previous scenarios, a combination of some of the most 
significant scenarios are chosen and the outcomes are compared with the base case and other scenarios.  
 
3.2 Optimal strategy selection:  
 

In this section, we have a design problem in which a certain budget is assigned to a set of different industrial, 
agricultural, and domestic water conservation projects. The goal is to allocate this budget to the optimal set of 
projects to maximize the water level of the lake at the end of the design horizon. This is considered as a simulation-
optimization problem in which DrSim simulates the nominated set of projects based on each allocated budget to 
different projects and a deep reinforcement learning algorithm on top of that finds the best budget allocation. 
Figure 12 shows the algorithm for this analysis based on deep reinforcement learning.  

In a sequential decision-making process, reinforcement learning's objective is to maximize the expected 
cumulative rewards. Given a set of states 𝑠(𝑖) and actions 𝑎(𝑖), the agent performs action 𝑎 after observing the 
current state 𝑠 in each step, while follows to a set of policies 𝜋 for water consumption reduction. Using the Bellmen 
equation [29], the anticipated return of each possible action an under state 𝑠 is calculated. 
 

Q𝜋(𝑠, 𝑎) = 𝐸 (∑ 𝛾𝑖−1

∞

𝑖=1

𝑅𝑖|𝑆0 = 𝑠, 𝐴0 = 𝑎, 𝜋) (1) 

 
In Equation (1), discount factor 𝛾 is multiplied by reward 𝑅, to try to maximize the total future rewards in a 

sequential loop. This is implemented in simulation process in a sequential decision-making trend. States are the 
simulation frames of the environments and actions are all possible combinations that the parameters can be tuned. 
The policies are trained based on the actions that continuously provide better rewards. In Bellman Equation (1), 
it is hard to track all possible Q-values and optimize the best policy. Therefore, a Deep Q-Learning (DQN) algorithm 
is used to approximate Q-value based on a deep neural network. In each state 𝑠 and the neural network weight of  
θ in DQN, the approximation of Q-values is provided from outputs of DQN for action 𝑄(𝑠, 𝑎; θ). Then a greedy action 
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is selected based on 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑠, 𝑎; θ) which then tunes the parameters of the simulator. Figure 12 shows the 
DQN representation for DrSim. Some of the most important characteristics of the simulation environment indicate 
the current state. In an iterative manner, a gradient loss function is used, and weights of neural network are 
optimized. The details of the states, actions, rewards, and training are described as follows: 
 

 
Figure 12. Interactive analysis for visualization of the outputs 

 
States: we use some of the representatives of the lake environment based on the simulator. Sconce the lake water 
level and the ground water levels are important factors, they are saved. The industrial, domestic, and agricultural 
features representing the characteristics of consumers are also collected to provide information for the state of 
the simulation in each watershed.  
 
Actions: The agent in each simulation step selects the action with the maximum expected cumulative reward (Q-
value). The final changes in the water level in Mead Lake are based on the decisions that change the water 
consumption. Therefore, the actions are how much budget spend in each time step to each project. And the 
outcome of these decisions will change the water levels and water consumptions. These outputs can be used to 
feed reward sections and states of the DQN framework.  
 
Rewards: in reinforcement learning, the agent decides based on positive or negative rewards. The agent uses 
Bellman equation to optimize parameters in neural network and find the optimal Q-value. The short-term reward 
can be calculated based on the number of changes in water levels after implementing that action in that watershed.  
 

𝑅 = ∑ (𝜇𝑚)

𝑚∈𝜔

 (2) 

 
Where 𝜔  is the set of industrial, agricultural, and domestic water reduction projects in each watershed. The 

definition is that in each step we try to minimize the water consumption aiming to maximize the final water level 
in the lake. This is a complicated decision that depends on previous and future decisions and states but the 
capability of DQN for training the policies based on previous decisions will help to find proper actions.  
 
Training: in the simulation, weights 𝜃 are updated by gradient descent function by minimizing the following loss 
function: 
 

𝐿(𝜃) = 𝐸𝑠,𝑎 [(𝑄∗ − 𝑄(𝑠, 𝑎; 𝜃))
2

] (3) 

 
Where 𝑄∗ =  𝑅 + 𝛾 𝑚𝑎𝑥𝑎’ 𝑄(𝑠’, 𝑎’;  𝜃) tries to find optimal Q-value, which is the summation of short-term 

reward R and the optimal Q-value of the next step. The 𝛾 term is the penalty term for future rewards. In this 
algorithm a 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy is used to consider the trade-off between exploration and exploitation. Therefore, 
with probability of 𝜀, a random action is chosen instead of the optimal action for exploration and avoiding local 
optimum issues. After calculation of loss function, Weight 𝜃 are updated using gradient descent. The gradient of 𝜃 
is given as follows: 
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∇𝜃𝐿(𝜃) = 𝐸𝑠,𝑎[(𝑄∗ −  𝑄(𝑠, 𝑎; 𝜃))∇𝜃𝑄(𝑠, 𝑎; 𝜃)] (4) 
 

This algorithm is described in the following pseudo code: 
 

  Algorithm 1. Training of the Deep Reinforcement algorithm  
  1    Initialize parameters θ for the simulation 
  2    for each episode: 
  3       for each simulation set: 

   / *Actions and simulating */ 
  4       if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝜀 then: 
  5      Select a random action a: 
  6        else: 
  7      Select 𝑎 = 𝑚𝑎𝑥 𝑄(𝑠, 𝑎; 𝜃): 
  8        end 
  9       Get short-term reward R and new state s’ by simulating action a; 

  10       Save state transition data (𝑠, 𝑎, 𝑠′, 𝑅); 
      /* Updating Q-network parameters*/ 

  11     Sample batch state transition {(𝑠, 𝑎, 𝑠′, 𝑅)}; 
       if simulator terminated then: 
      𝑄∗ = 𝑅 
      else: 
      𝑄∗ =  𝑅 + 𝛾 𝑚𝑎𝑥𝑎’ 𝑄(𝑠’, 𝑎’;  𝜃) 
      End 
      Use equation 1 to perform using gradient descent on the loss 𝐿 (𝜃) based 

on 𝑄∗; 
     end 
    End 

 
 
 
4.  Simulation outputs 
 

There are different outputs based on the framework for DrSim. First, the results for each individual decision-
making procedure. Second, the result for different experiments and analysis for scenario-based analysis and the 
optimal strategy selection mentioned in section 3 (Scenario setup and Experiment).  

The output data for each consequence of actions are logged for ground water, surface water, streams, lakes and 
rivers and consumers (industry, agriculture and domestic). Two kinds of output files are provided: one for events 
and one for the entity’s metrics over time. Events are defined in DrSim as transitions in an entity’s finite state and 
for each event the type, timestamp, water levels, output and input waters, and other entity info (e.g., consumptions, 
produced products etc.) are recorded. These geo-temporal data are collected in geo-temporal data frames which 
can be used for visualization and additional data analytic analysis. Writing the codes in python and using GIS based 
programing makes it simple to analyze outputs and inputs visually in interactive maps. Figure 5 shows an example 
of an interactive outcome for some polygons and streams nearby Mead Lake. This analysis can be shown over a 
period as well to show the trend of changes over time. It makes it easy to track anomalies in simulation and 
provides insight into different scenarios visually. The visualization also displays entity-specific metrics on mouse 
hover.  

Other results are based on comparison of different kinds of scenario setup. These comparisons are based on 
scenario-based analysis where a base case is compared with other scenarios. For the Optimal strategy selection 
section, we provide a set of results related to the best strategies and budget allocation to projects. Also, the results 
for efficiency of DQN algorithm are provided.  
 
 

5. Conclusion  
 

The phenomenon of drought has become widespread. There is a need for a scientific structure to examine its 
various dimensions. This research first identifies the necessary and effective components and assumptions in the 
drought of the lake. Then it provides a measurable structure using the concept of ECS and explains its components. 
The elements and assumptions of DrSim simulator are explained. To analyze the water level of the lake under 
different conditions, two types of analysis are performed. First, the level of the lake has been examined in a 
scenario-based manner, in which a base case is compared with scenarios in which industry, agriculture, and urban 
users have each reduced water consumption. The next analysis is the optimal strategy selection, where a specific 
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budget has been considered to reduce water consumption and should be optimally divided between various 
agricultural, industrial, and urban projects to finally achieve the maximum level of the lake water. In this case, a 
deep reinforced learning algorithm has been used to select the best set of projects. This article presents the basic 
structure and sources of information needed to investigate the drought phenomenon and how to analyze the lake 
level, but the providing simulation results with real data is considered for future work. The accuracy of the output 
results depends on the quality of the input data. Although it has been tried to use accurate and referenced data, 
one of the limitations of this work is the need for more accurate references for model inputs. 
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