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 In this paper, the architecture of closed-loop synchronizers is studied. For a GNSS (Global 
Navigation Satellite System) receiver, the fine estimation of the code delay and Doppler 
frequency is generally performed by two concatenated null-seekers, the PLL (Phase Lock 
Loop), and the DLL (Delay Lock Loop). The null-seeker is implemented, tested and 
analyzed in a software receiver. The noise equivalent bandwidth, integration time and 
different incoming signal structures are considered for testing and performance 
evaluation. Different tests have been performed by changing the input signal from a step 
unit function to a ramp signal and finally to a parabolic shaped signal. The noise-free 
steady state value of estimation error is evaluated. The type of loop filter defines the 
tracking capability of the loop. The estimation error must quickly reach zero for a certain 
input model and any initial error, in the absence of noise.   

 
 
 
 
 
 

1. Introduction  
 

Four separate worldwide GNSS systems are now available, with Galileo and BeiDou attaining full operating 
capacity [1]. Synchronizing with the visible satellite signals is an important function of any GNSS receiver [2]. To 
detect and track the GNSS signals, the receiver employs the auto-correlation principle. It generates a transmitted 
GNSS signal copy of a single satellite inside the receiver and correlates this replica signal with the received signal 
[3]. The receiver must first produce a local signal that matches the incoming signal from the satellite before it can 
give measurements to compute a position, velocity, and timing (PVT) solution. This is done in two stages, namely 
acquisition and tracking [4]. The objective of the acquisition stage is to find coarse estimates of the Doppler shift 
and timing offset [5]. An extremely crucial component is the carrier tracking loop, which is utilized to synchronize 
the local carrier with the incoming signals. Commonly used in the carrier tracking loop, the phase lock loop (PLL) 
is incredibly fragile, especially in difficult environments [4]. 

The tracking bandwidth and integration time play an important role on accuracy and dynamic stress tolerance. 
To reduce the noise and improve accuracy, the tracking bandwidth should be narrow and the integration time long 
[5]. As a result of the oscillator noise and dynamics on the carrier tracking loop, the bandwidth cannot be reduced 
arbitrarily. Otherwise, it will cause the phenomena of lock-lose [6]. Due to the complicated environment in the 
tracking system, accurate models and noise statistics are difficult to be known [4]. For a high sensitivity receiver, 
no matter whether in acquisition or tracking, the key problem is to extend the coherent time [6]. In [7] the focus 
is on the process of carrier phase tracking in a scalar PLL. The authors in [8] propose an accurate receiver clock 
drift estimation method to increase prediction effective time.  
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In this work is implemented, tested and analyzed a digital synchronization loop architecture in a software 
receiver. The noise equivalent bandwidth, integration time and different incoming signal structures are considered 
for testing and performance evaluation. 
 

2. Material and Method 
 

In a conventional GNSS receiver, the acquisition and tracking of the signals are all processed by the hardware. 
However, in a software GNSS receiver, the signal is digitized using an analog-to-digital converter (ADC). 
Acquisition and tracking of GNSS satellites are the key processes involved in a GNSS receiver. Software GNSS 
receivers capture the RF modulated signals at L1/E1 frequency, down convert them to an intermediate frequency 
(IF), digitize them, and perform signal processing to extract the position information from the navigation message. 
The digitized input signal is then processed using the software receiver [9] depicted in Figure 1. 
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Figure 1. Simplified structure of a GNSS receiver 

 
The architecture of a closed-loop synchronizer, namely the null-seeker is given in Figure 2 [3]. The input signal 

𝑦[𝑘, 𝜉] is combined with a locally generated reference signal 𝑥𝑟𝑒𝑓 = (𝑘, 𝜉[𝑘])  which has typically the same basic 

structure as the input signal, apart from the presence of noise and other nuisances. It is characterized by the 

estimated parameter computed during the previous iteration 𝜉[𝑘]. The discrimination function can transform 
𝑧[𝑘, 𝜉] into a different metric (error signal). 𝑒𝜉[𝑘, 𝜉] value depends on and is proportional to the estimation error 

𝑒𝜉[𝑘, 𝜉] ∝ 𝜉 − 𝜉[𝑘]. A fundamental property is that one of its zeros corresponds to the searched value of the 

parameter to be estimated.  
The key operation of a null seeker is to find a zero of its discrimination function (iteratively).  The 

discrimination function S(.) in (1) can be nonlinear, but it is convenient to study the overall system in its linearity 

region therefore: 𝑒𝜉[𝑘, 𝜉] ≈ 𝛽 · (𝜉 − 𝜉[𝑘]) where 𝛽 is the slope of the S-curve in 𝜉 − 𝜉[𝑘] = 0. 

 

𝑒𝜉[𝑘, 𝜉] = 𝑆(𝜉 − 𝜉[𝑘]) (1) 

 
The Low-pass loop filter smoothens the error signal to reduce the contribution of the noise 𝑤[𝑘] and it still 

preserves the reactivity of the loop to the dynamics of the parameter to be estimated. The new estimated 
parameter is extracted from the filtered error signal. 
 

𝜉[𝑘 + 1] = 𝜉[𝑘] + 𝑒𝜉[𝑘] (2) 

 
The updating rule in (2) followed by the “Delay” block, represents an IIR digital filter, with input 𝑒𝜉[𝑘] and 

output 𝜉[𝑘]. 
 

Z-transform is given by Equation 3:  
 

𝑒(𝑧) = ∑ 𝑒[𝑘]𝑧−𝑘

+∞

𝑘=−∞

 (3) 

 

and update rule transfer function is 𝑧𝜉(𝑧) = 𝜉(𝑧) + 𝑒𝜉(𝑧).  

Transfer function from 𝑒𝜉(𝑘) to 𝜉(𝑘) can be written in the form of Equation 4: 
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𝐷(𝑧) =
𝜉(𝑧)

𝑒𝜉(𝑧)
=

1

𝑧 − 1
=

𝑧−1

1 − 𝑧−1
 (4) 
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Figure 2. Null-seeker architecture 

 
As the received signal is noisy, then the error signal contains an additive noise component 𝑒𝜉[𝑘, 𝜉] = 𝛽𝛿𝜉[𝑘] +

𝜂[𝑘] where 𝛿𝜉[𝑘] = 𝜉 − 𝜉[𝑘] is the instantaneous error and 𝜂[𝑘] is a discrete-time random process, white and 

Gaussian. It is independent from 𝛿𝜉[𝑘] and “circulates” within the loop coupled with 𝛿𝜉[𝑘]. Since the variables 

inside the loop are updated step by step, the theory of discrete-time signals is the most adequate to study the loop 
operations. 

The null-seeker architecture can be reduced to the equivalent linear system depicted in Figure 3 where only 
the parameter to be estimated appears. From the point of view of the system performance, 𝛿𝜉[𝑘] represents the 

instantaneous estimation error, which we would like to be exactly equal to zero. The estimation error 𝛿𝜉[𝑘] is the 

sum of two contributes: 𝜉[𝑘] and 𝜂[𝑘]. We would like the first component to be zero and the second component 
(jitter) be as small as possible, at least after an initial transient (as small as possible). 
 

 
Figure 3. Equivalent linear system of the null-seeker architecture 

 
 

3. Simulation and Results  
 
 

To test the behavior of the null-seeker, the block diagram in Figure 1, is implemented at the software level using 
MATLAB. Different tests have been performed by changing the input signal from a unit step function to a ramp 
signal and finally to a parabolic shaped signal. The other two variable parameters of the simulations are 
respectively the order of the filter and the product of the equivalent noise bandwidth with the integration time. 
The steady-state estimation error is evaluated and plotted in for all the tests. 

The input signals considered are shown in Table 1. The step input parameter can be considered a constant 
unknown random variable. The ramp input represents a system that transmits a pure carrier, while it moves at 
constant speed v. The parabolic function represents a system that transmits a pure carrier while moving at a 
constant acceleration a. 
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Table 1. Three input signal models 
Input Graph Mathematical expression 

Step 

 
 

Ramp 

 
 

Parabolic 

 
 

 
The Z-transform of the three input models, and corresponding estimation error in the Z-domain are shown in 

Table 2. 
 

Table 2. Three input signal models 
Input Z-transform Estimation error in Z-domain 

Step  
 

 

Ramp  
 

 

Parabolic 
  
 

 
3.1. First order loop with unit step input 
 

One can observe from Figure 4 to Figure 5 that an increase of one order of magnitude of the loop noise 
equivalent bandwidth (from BeqTs = 0.0005 to BeqTs = 0.005) decreases k, and the estimation error decreases with 
the same order of magnitude. So, the integration time is decreased by an order of magnitude. Another important 
remark that can be derived is that in order to minimize the steady-state error, the noise equivalent bandwidth 
should be increased.  
 

  
Figure 4. Plot of the estimation error 𝛿𝜉[𝑘] in the 

logarithmic scale, for step input 

Figure 5. Plot of the steady state error 𝛿𝜉[𝑘] for a 

step input and BeqTs = 0.005 
 

The plot in Figure 8 is for k=1000 samples, which obviously are not enough to correctly measure the acquisition 
time and so the MATLAB script is modified using k = 10000, obtaining the plot on Figure 9. The increased number 
of samples allows us to correctly determine the acquisition time. 
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Figure 6. Plot of the steady state error 𝛿𝜉[𝑘] for a 

step input and BeqTs = 0.025 

Figure 7. Plot of the steady state error 𝛿𝜉[𝑘] for a 

step input and BeqTs = 0.05 
 
 

  
Figure 8. Plot of the steady state error 𝛿𝜉[𝑘] for a 

step input, BeqTs = 0.0005 and k=1000 

Figure 9. Plot of the steady state error 𝛿𝜉[𝑘] for a 

step input, BeqTs = 0.0005 and k=10000 
 

 
3.2. First order loop with ramp input 
 

After plotting the estimation error 𝛿𝜉[𝑘] for a ramp input, we observe a quadratic characteristic of the 

estimation error, which achieves the steady state value 𝛿𝜉[𝑘] = 5 after k = 456 samples.  

From the Final Value Theorem, we have this relationship for a ramp input:   
 

lim
𝑘→∞

𝛿𝜉,2
(𝐼) [𝑘] = lim

𝑧→1

𝐴𝑧

(𝑧 − 1) + 𝛽𝛾
=

𝐴

𝛽𝛾
 

 
Substituting the values of the filter’s parameters A, β, and γ from the MATLAB script, we obtain this final value 

according to the Final Value Theorem: 
a1 = 0.1, β=1 and 

 

𝛾 =
4 · 𝐵𝑒𝑞𝑇𝑠

𝛽
=

4 · 0.005

1
= 0.02 

 

lim
𝑘→∞

𝛿𝜉,2
(𝐼) [𝑘] =

𝐴

𝛽𝛾
=

𝑎1

𝛽𝛾
=

0.1

1 · 0.02
= 5 

 
So, is obtained the same value of the steady state error from the MATLAB simulation and from the Final Value 

Theorem  𝛿𝜉[𝑘] = 5.  
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Figure 10. Plot of the steady state error 𝛿𝜉[𝑘] for a 

ramp input, BeqTs = 0.0005 

Figure 11. Plot of the steady state error 𝛿𝜉[𝑘] for a 

ramp input, BeqTs = 0.005 
 
 

  
Figure 12. Plot of the steady state error 𝛿𝜉[𝑘] for a 

ramp input, BeqTs = 0.05 

Figure 13. Plot of the steady state error 𝛿𝜉[𝑘] for a 

parabolic input, BeqTs = 0.005 
 
 

In Table 3 are summarized the results for different values of the noise equivalent bandwidth product with 
integration time. Observing the plots and referring to the values of the estimation error 𝛿𝜉[𝑘] from Table 3, in three 

different cases of BeqTs, we can derive the relationship between the estimation error and the loop noise equivalent 
bandwidth BeqTs as following: 

An increase of one order of magnitude of the loop noise equivalent bandwidth (from BeqTs = 0.0005 to BeqTs = 
0.005 and finally to BeqTs = 0.05) decreases the estimation error with the same order of magnitude (from 50 to 5, 
to 0.5) and so the time is decreased by an order of magnitude (10 times after each iteration). 

From this conclusion we can draw another important remark that to minimize the steady-state error, is needed 
to increase the noise equivalent bandwidth BeqTs. 
 

Table 3. The effect of the increase of BeqTs on the steady-state error 
BeqTs 𝜹𝝃[𝒌] k 

0.0005 50 4601 

0.005 5.0 456 

0.05 0.5 42 

 
 
3.3. First order loop with parabolic input 
 

After plotting 𝛿𝜉[𝑘] as a function of the number of samples k for the parabolic input, Figure 12 is obtained in 

which can be easily observed that the estimation error 𝛿𝜉[𝑘] is unbounded because of the unlimited characteristic 

of the parabolic input. To verify if it is possible to have a limited maximum value for the estimation error 𝛿𝜉[𝑘] we 
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run the script for different values of BeqTs and the plots in Figures 13-14 were obtained. It is obvious that it is not 
possible to have a limited maximum value for 𝛿𝜉[𝑘] because in all the cases it is an unlimited function.  

 

  
Figure 14. Plot of the steady state error 𝛿𝜉[𝑘] for a 

parabolic input, BeqTs = 0.0005 

Figure 15. Plot of the steady state error 𝛿𝜉[𝑘] for a 

parabolic input, BeqTs = 0.05 
 

3.4. Second order loop with a step input 
 

The second order loop can correctly track both a step and a ramp input signal. 
 

  
Figure 16. Second order loop with a step input, 

zeta=0.707 
Figure 17. Second order loop with a step input, 

zeta=1 
 

  
Figure 18. Second order loop with a step input, 

zeta=0.5 
Figure 19. Second order loop with a step input, 

zeta=0.707, BeqTs=0.05 
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In the simulation program were set BeqTs=0.005, second-order loop, zeta=1 √2⁄ , then the program was run with 
a step input. The values of a and b as obtained by the program are: a = 0.0133 and b = 0.0132. The values of α and 
α* obtained by the program are: α = 0.9933+i0.0066 and α*=0.9933-i0.0066. Modulus and phase of the poles are: 
M=0.9934 and psi=0.0066. For k=99÷146 we have that: −0.0977 < 𝛿𝜉[𝑘] < 0.0958. From Figure 16, for 

k=117÷120 we have that: −0.0060 < 𝛿𝜉[𝑘] < 0.0069. For k=551÷999 we have that: −0.01 < 𝛿𝜉[𝑘] < 8.1952 ∙

10−4. 
 
3.5. Second order loop with a ramp and quadratic input 
 

Figure 20 depicts the estimation error for a ramp input and BeqTs=0.005. In Figure 21 is shown the estimation 
error plot for 1000 samples. It is observed a fast increase of the estimation error in the sampling interval (1-406) 
reaching its maximum value 234,9 for k = 406. After this interval the nearly steady-state is achieved for the 
remaining sampling interval. The value of steady-state error 𝛿𝜉[𝑘] in this case observed in the deltaxi vector of 

values is 227.6 for the last sample k=999. 
The only parameter that we can change in order to observe a difference in the reduction of the steady-state 

error is the second order loop filter’s parameter zeta. The differences of the steady-state values due to the changes 
of the zeta parameter are shown in Table 4. 
 

  

Figure 20. Plot of the estimation error for ramp input 
Figure 21. Plot of the estimation error for quadratic 

input 
 

Table 4. The differences of the steady-state value due to the changes of the zeta parameter 
Zeta value 𝜹𝝃[𝒌]  

1

√2
  227.63 

1

2
  405.99 

 
2 115.03 

 
4 105.19 

 
8 102.81 

 
Two main conclusions are derived from Table 4: First, with an increase of zeta parameter, the steady-state 

error 𝛿𝜉[𝑘] decreases in the same proportion, and second, zeta equal to two is in a sort of way the value after which 

there is no significant decrease of the steady-state error. 
Figure 22 shows that the simulation’s estimation error follows nearly exactly the theoretical system response. 

Figure 23 shows the time evolution of the noise-free error which tends to reach zero if |1 − 𝛽𝛾| < 1. 
 
4. Conclusion  
 

In this article, the architecture of digital synchronizers for GPS receivers was studied. To evaluate the 
performance of the null-seeker, numerous simulation tests were performed. Three types of input signals were 
applied: step, ramp and parabolic. From the results we concluded that a higher noise equivalent bandwidth 
reduces the steady-state error, but this also reduces the integration time. 

If it is expected that the parameter to be estimated is just an unknown constant, then a first-order loop is 
sufficient. If the parameter to be tracked varies linearly, then it is necessary to have at least a second-order loop. 
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If the parameter to be tracked has a quadratic variation, then it is necessary to have a third-order loop, but higher 
order loops may show instability problems. The conclusion is to choose the smallest order that guarantees a zero 
steady-state error in the considered application. For a second order loop, the steady state error for an input 
quadratic signal is constant. Considering the complexity in the design of high-order filters, our future work aims 
at studying the behavior of digital synchronizers for applications, in environments where the signal changes very 
quickly and in a non-deterministic way. 
 

 
Figure 22. Comparison between simulation and theoretical system response 

 

 
Figure 23. Time evolution of the noise-free error 
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