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 In this paper, we are talking about the formulation of the Cauchy problem for matrix 
factorizations of the Helmholtz equation in two-dimensional and three-dimensional 
bounded domains. Preliminary information and formulation of the Cauchy problem are 
given. The corresponding examples characterizing the matrix factorization of the 
Helmholtz equation are constructed. On the basis of the constructed Carleman function, a 
regularized solution of the Cauchy problem for the matrix factorization of the Helmholtz 
equation on the plane in three-dimensional bounded domains is constructed in an explicit 
form.  

 
 

1. Introduction  
 

 It is known that the Cauchy problem for elliptic equations is incorrect: the solution to the problem is unique, 
but unstable. The Cauchy problem for matrix factorizations of the Helmholtz equation, like many Cauchy 
problems for finding regular solutions of elliptic equations, in the general case is unstable with respect to 
uniformly small changes in the initial data. Thus, these tasks are incorrectly posed [1]. In unstable problems, the 
image of the operator is not closed, therefore, the solvability condition cannot be written in terms of continuous 
linear functionals. So, in the Cauchy problem for elliptic equations with data on a part of the boundary of a 
domain, the solution is usually unique, the problem is solvable for an everywhere dense data set, but this set is 
not closed. Consequently, the theory of solvability of such problems is much more difficult and deeper than the 
theory of solvability of the Fredholm equations. The first results in this direction appeared only in the mid-1980s 
in the works of L.A. Aizenberg [2], A.M. Kytmanov and N.N. Tarkhanov [3]. In work [3], an integral formula was 
proved for systems of equations of elliptic type of the first order with constant coefficients in a bounded domain. 
For special domains, the problem of continuing limited analytic functions in the case when data is specified only 
on a part of the boundary was considered by T. Karleman [4]. The research of T. Karleman was continued by G.M. 
Goluzin and V.I. Krylov. The use of the classical Green formula for constructing a regularized solution of the 
Cauchy problem for the Laplace equation was proposed by academician M.M. Lavrent’ev in his famous 
monograph [5]. Using the ideas of M. M. Lavrent’ev [5,6], Sh. Yarmukhamedov constructed in explicit form a 
regularized solution of the Cauchy problem for the Laplace equation (see for instance [7]) The construction of 
the Carleman matrix for elliptic systems was carried out by Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. 
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Shlapunov, I.E. Niyozov and others. In papers [8-20], the questions of exact and approximate solutions of the ill-
posed Cauchy problem for various factorizations of the Helmholtz equations are studied. Such problems arise in 
mathematical physics and in various fields of natural science (for example, in electro-geological exploration, in 
cardiology, in electrodynamics, etc.)  
 

2. Solution of the Cauchy problem on the plane  
 

 Let 2R be a two-dimensional real Euclidean space, 2

1 2( , ) Rx x x=  , 2

1 2( , ) Ry y y=  .  

 2RG is a bounded simply connected domain with a piecewise smooth boundary consisting of the plane 

2: 0T y =  and some smooth curve S  lying in the half-space 
2 0y  , i.e. G S T = .  

 We introduce the following notation:  

,r y x y x= − = − , 2 2

2 , 0w i u y u= + +  , ( )
1 2
, ,

T
T

x x x x  =    = ,  

( )1 2=
TT   −  -transposed vektor  , 0

1( ) ( ( ),..., ( )) , (1,...,1) RT n

nU x U x U x u= =  ,  

2 , 2mn m= = , 
1...0

( ) ........

0... n

z

E z

z

=  - diagonal matrix, 
1( ,..., ) Rn

nz z z=    

 Let ( )TD  , ( )n n  - be a matrix with elements consisting of a set of linear functions with constant coefficients 

of the complex plane for which the condition is satisfied:  
 

2* 2 0( ) ( ) (( ) )T TD D E u   = +                                                                           (1) 

 

where *( )TD   - Hermitian conjugate matrix to ( )TD  , 
2

2 2

1

j

j

 
=

= ,  −  real number. 

 Consider in the domain G  a system of partial differential equations of the first order with constant 

coefficients of the form  
 

( ) ( ) = 0,xD U x                                                                                             (2) 

 

where ( )xD   is the matrix of differential operators of the first order.  

 We denote by ( )A G  the class of vector functions in the domain G  continuous on =G G G  and satisfying 

system (2).  
  
The Cauchy problem 1. Suppose ( ) ( )U y A G  and  

 

( ) = ( ), .
S

U y f y y S                                                                                   (3) 

  
Here, ( )f y  a given continuous vector-function on S .  

 It is required to restore the vector function ( )U y  in the domain G , based on it’s values ( )f y  on S .  

  
Example 1. Let given a system of first-order partial differential equations of the form (see, for instance [20])  

1 2

2 1

1 1

2 1

1 2 4

1 2 3

3 4 2

3 4 1

0,

0,

0,

0.

x x

x x

x x

x x

U U iU

U U iU

U U iU

U U iU

 −  + =


 +  + =

− +  − =
  +  + =

  

  
Assuming 

1 21 2,x x  →  → , we compose the following matrices:  

1 2

2 1

1 2

2 1

0

0
( ) ,

0

0

T

i

i
D

i

i

 

 


 

 

 
 
− − =
 −
  
 

 

1 2

2 1

1 2

2 1

0

0
( )

0

0

T

i

i
D

i

i

 

 


 

 



− − 
 

− =
 −
 
 − 

.  
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Relationship (1) is easily verified.  
 If G  is a bounded and )()( GAyU  , then the following integral formula of Cauchy type is true  

 






G

y GxdsyUxyMxU ,,)(),(=)(                                                                            (4) 

where  

).()(
4

=),( *0(1)
0

TtD
y

DurH
i

ExyM


































− 

 

 

 Here ),(= 21 ttt  is the unit external normal, drawn at a point y , the curve G , )(
4

(1)
0 rH

i
−  is the fundamental 

solution of the Helmholtz equation in 2R .  
 We denote by )(wK  is an entire function taking real values for real w , ( −+ vuivuw ,,= real numbers) and 

satisfying the following conditions:  
 

2.1,0,=,<<,<),(M=)(sup0,)( )(

1

pupuwKvuK pp

v

−


                                      (5) 

  
We define the function ),( xy  at xy   by the following equality:  

 




+−
−

0
22

0

22

.
)()(

Im
)(2

1
=),( du

u

uIu

xw

wK

xK
xy






                                                           (6) 

  
Here )(=)( 00 uiJuI   is the Bessel function of the first kind of zero order  

 Formula (4) is true if instead )(
4

(1)
0 rH

i
−  of substituting the function  

 

),,()(
4

=),(
(1)
0 xygrH

i
xy +−                                                                              (7) 

 
where ),( xyg  is the regular solution of the Helmholtz equation with respect to the variable y , including the 

point xy = .  

 Then the integral formula (4) has the following form  
 






G

y GxdsyUxyNxU ,,)(),(=)(                                                                        (8) 

where  

( ) ).(),(=),( *0 TtD
y

DuxyExyN




























 

 

 Next, we use the following equalities:  
 

,)(=)(,=

,,
)()(Im)()(Re

)(

)(Im))(()(Re)(
=

),(
)(2

012110

0

22

1
22

22
22

11

2
02211011

1
2

uIuIyxyiw

xy
u

duuI

ru

wKxywKu

xy

r

wKxyxysignwKxy

y

xy
xK











+−


+


+

−−+

−−

−
−−−−








                                           (9) 

and  
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+

+−−
−

−
−−−





0

11122

22
22

2
011022

2
2

,,)(
)(Im)(Re)(

)(Im)()(Re)(
=

),(
)(2

xyduuI
ru

wKuwKxy

r

wKxywKxy

y

xy
xK








                                                  (10) 

 
which are obtained from (6).  
 By choosing the entire function )(wK  we obtain the following results:  

 In the formula (6) choosing  
 

0,>),(exp=)(),(exp=)( 22  xxKwwK                                                                     
(11) 

we get  

0.>,

,
)()(exp

Im
2

=),(

00

0
22

0

2

2













+

+−
− 

−

du
u

uIu

xw

we
xy

x

                                                            
(12) 

  
Then the integral formula (8) has the following form:  
 






G

y GxdsyUxyNxU ,,)(),(=)(                                                                (13)  

where  

( ) ).(),(=),( *0 TtD
y

DuxyExyN


























   

  
Theorem 1. Let )()( GAyU   it satisfy the inequality  

 

( ) 1, .U y y T 
                                                                                           

(14) 

 If  

 

S

y GxdsyUxyNxU ,,)(),(=)(                                                                            (15) 

then the following estimate is true  
 

.1,>,),()()( 2 GxexCxUxU
x

−
−  

                                                                  
(16) 

  
Here and below functions bounded on compact subsets of the domain G , we denote by ),( xC  .  

 Proof. Using the integral formula (13) and the equality (15), we obtain  

 +

b

a

y GxdsyUxyNxUxU .,)(),()(=)(    

 Taking into account the inequality (14), we estimate the following  

.,),()(),(

)(),()()(







−

T

y

T

y

T

y

GxdsxyNdsyUxyN

dsyUxyNxUxU





                                                               (17) 

 We estimate the integrals  




b

a

y

b

a

ds
y

xy
dyxy

1
1

),(
,),( 

  and  


b

a

yds
y

xy

2

),(  on the part T  of the plane 

0=2y .  

 Let 0> . Separating the imaginary part of equality (12), we obtain  
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0.>,,
)(sin

)(
cos

2

e
=),(

2

0
22

0

22

22
2

0

0

22

22)( 22

xxydu
u

uIu

ru

uy

duuuI
ru

u
xy

xy


++

+
−

−







+

+








−














                                                   (18) 

  
Given (18) and the inequality  
 

),(exp)(0 uuI                                                                                               (19) 

we have  

.1,>,),(),( 2 GxexCdsxy
x

b

a

y 
−

  
                                                        (20) 

 To estimate the integrals  


b

a

yds
y

xy

1

),(  and  


b

a

yds
y

xy

2

),( , we use equalities (9) and (10). To do this, 

using equalities (11) and choosing  
 

0,>),(exp=)( 00  wwK                                                                           (21) 

 
we obtain the following formulas  
 





+


+

−−+
−−

−
−−+−





0
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1
22

22
22

11

2
02211011

1

,,
)()(expIm)()(expRe

)(

)(expIm))(()(expRe)(
=

),(
2 2

xy
u

duuI

ru

wxywu
xy

r

wxyxysignwxy

y

xy
e

x







 

                                (22) 

and  





+

+−−
−

−
−+−





0

11122

22
22

2
011022

2

.,)(
)(expIm)(expRe)(

)(expIm)()(expRe)(
=

),(
2 2

xyduuI
ru

wuwxy

r

wxywxy

y

xy
e

x







 

                                       (23) 

  
Given equality (22) and inequality  
 

),(exp)(1 uuuI                                                                                      (24) 

we get  
 

.1,>,),(
),(

2

1

GxexCds
y

xy x

b

a

y 


 −

                                                    (25) 

  
Similarly, taking into account equality (2.16) and inequality (24), we estimate the following integral  
 

.1,>,),(
),(

2

2

GxexCds
y

xy x

b

a

y 


 −

                                                    (26) 

  
From inequalities (20), (25) and (26) we obtain (16).  
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Theorem 1 is proved. 
 Corollary 1. The limiting equality  
 

lim ( ) = ( )U x U x
→

  

 
holds uniformly on each compact set in the domain G .  

 Theorem 2. Let )()( GAyU   satisfy condition (14) on a part of the plane 0=2y , and on a smooth curve S  the 

inequality  
 

1,<<0,)( yU                                                                                   (27) 

where 22 max= yy
Sy

.  

 Then the following estimate holds  

.1,>,),()( 2

2

GxxCxU
y

x

                                                                       (28) 

  
Proof. From (13) and equality (15) as x G , we have  

( ) = ( , ) ( ) ( , ) ( ) .

b

y y

S a

U x N y x U y ds N y x U y ds +                                                                (29) 

 We estimate the following  

.,)(),()(),()( GxdsyUxyNdsyUxyNxU

b

a

y

S

y +                                                       (30) 

  
Given inequality (27), we estimate the first term in inequality (30).  
 

.,),(

)(),()(),(

GxdsxyN

dsyUxyNdsyUxyN

S

y

S

y

S

y















                                                               (31) 

  

We estimate the integrals ( , ) y

S

y x ds , 
1

( , )
y

S

y x
ds

y



  and 
2

( , )
y

S

y x
ds

y



  on a smooth curve S .  

  
Taking into account equality (18) and inequality (19), we have  
 

2 2( )( , ) ( , ) , > 1, .y x

y

S

y x ds C x e x G

   −                                                          (32) 

  
Using equality (2.15) and inequality (2.17), we have  
 

2 2( )

1

( , )
( , ) , > 1, .

y x

y

S

y x
ds C x e x G

y

   −
 

                                                    (33) 

  
Similarly, using equality (23) and inequality (24), we obtain  
 

2 2( )

2

( , )
( , ) , > 1, .

y x

y

S

y x
ds C x e x G

y

   −
 

                                                    (34) 

  
From (32) - (34) we obtain  

.1,>,),()(),(
)( 22 GxexCdsyUxyN

xy

S

y 
−

  
                                        (35) 
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 The following is known  

.1,>,),()(),( 2 GxexCdsyUxyN
x

b

a

y 
−

  
                                                 (36) 

  
Now, taking into account (35) - (36), we have  
 

.1,>,1)(
2

),(
)( 22 Gxee

xC
xU

xy
+

− 
                                                      (37) 

  
Choosing   from the equality  

,
1

ln
1

=
2 


y

                                                                                         (38) 

we obtain inequality (28).  
  
Theorem 2 is proved.  
 Let )()( GAyU   and instead )(yU  on S  with its approximation )(yf , respectively, with an error, 1<<0  ,  

 

 − )()(max yfyU
S

.  

 We set  

 

S

y GxdsyfxyNxU .,)(),(=)()(                                                                 (39) 

  
The following is true.  
  
Theorem 3. Let )()( GAyU   on the part of the plane 0=2y  satisfy condition (9).  

 Then the following estimate holds.  

.1,>,),()()( 2

2

)( GxxCxUxU
y

x

−                                                        (40) 

  
Proof. From the integral formulas (13) and equality (39), we have  

  .)(),()()(),(=)()( )(  +−−

b

a

y

S

y dsyUxyNdsyfyUxyNxUxU    

 Now, repeating the proofs of Theorems 1 and 2, we obtain  
 

.1)(
2

),(
)()( 22

)(
xy

ee
xC

xUxU


 
 −

+−  

  
Hence, choosing   from equality (38), we obtain (40).  

  
Theorem 3 is proved. 
 Corollary 2 The limiting equality  

( )
0

lim ( ) = ( )U x U x 
→

  

 
holds uniformly on each compact set in the domain G .  

 Thus, the functional )()( xU   is a regularization of the solution of the problem (2) - (3).  

 

3. Solution of the Cauchy problem in space  
 

 Let 3R  be the three-dimensional real Euclidean space,  
 

3

1 2 3= ( , , ) Rx x x x  , 3

1 2 3= ( , , ) Ry y y y  , 2

1 2= ( , ) Rx x x  , 2

1 2= ( , ) Ry y y  .  
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 3RG   be a bounded simply-connected domain with piecewise smooth boundary consisting of the plane T : 

3 = 0y  and of a smooth surface S  lying in the half-space 
3 > 0y , that i.s., =G S T . 

 We introduce the following notation:  

= , =r y x y x  − − , 2 2

3= , 0,w i u y u+ +   ( )
1 2 3

= , , ,
T

x x x x     T

x  → ,  

( )1 2 3=
TT    −  transposed vector  , 0

1( ) = ( ( ),..., ( )) , = (1,...,1) RT n

nU x U x U x u  ,  

= 2 , = 3,mn m  
1...0

( ) = .......

0... n

z

E z

z

−  diagonal matrix, 
1= ( ,..., ) Rn

nz z z  .  

 Let ( )TD x  the ( )n n − the matrix with elements consisting of a set of linear functions with constant 

coefficients of the complex plane for which the following condition is satisfied:  
 

2* 2 0( ) ( ) = (( ) )T TD D E u   + ,                                                                      (41) 

where *( )TD x  is the Hermitian conjugate matrix ( )TD x , 
3

2 2 ,j

j

 =   − real number   

 Consider in the region G  a system of differential equations in partial derivatives of the first order  
 

( ) ( ) = 0,xD U x                                                                                               (42) 

 

where ( )xD   is the matrix of differential operators of the first order.  

 We denote by ( )A G  the class of vector functions in the domain G  continuous on =G G G  and satisfying 

system (42).  
  

The Cauchy problem 2. Suppose ( ) ( )U y A G  and  

 

( ) = ( ), .
S

U y f y y S                                                                                       (43) 

 
Here, ( )f y  a given continuous vector-function on S .  

 It is required to restore the vector function ( )U y  in the domain G , based on it’s values ( )f y  on S .  

  

Example 2. Let a system of first-order partial differential equations of the form  
 

1 2 3

1 2 3

2 1 3

2 1 3

3 1 2

3 1 2

3 2 3

3 2 1

1 4 6 8

2 3 5 7

2 3 8 6

1 4 7 5

2 5 8 4

1 6 7 3

4 6 7 2

3 5 8 1

0,

0,

0,

0,

0,

0,

0,

0.

x x x

x x x

x x x

x x x

x x x

x x x

x x x

x x x

U U U iU

U U U iU

U U U iU

U U U iU

U U U iU

U U U iU

U U U iU

U U U iU

 +  +  + =


 +  +  + =
  −  +  + =

− +  +  + =


 +  +  + =

 −  +  + =

 −  +  + =

 +  +  + =










  

  

Assuming 
1 21 2,x x  →  →  and 

3 3x  → , we obtain the matrices  

31 2

31 2

32 1

32 1

3 1 2

3 1 2

3 2 1

3 2 1

0 00 0

0 00 0

0 00 0

0 00 0
( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T

i

i

i

i
D

i

i

i

i

 

 

 

 


  

  

  

  

 
 
 
 −
 
− 

=
 
 

− 
 

−
 
 
 

, 

31 2

31 2

32 1

32 1*

3 1 2

3 1 2

3 2 1

3 2 1

0 00 0

0 00 0

0 00 0

0 00 0
( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T

i

i

i

i
D

i

i

i

i

 

 

 

 


  

  

  

  

−− 
 

− 
 −−
 

− 
=
 −
 

− − − 
 −
 
 − 
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Relation (41) is easily verified.  
 If G  is a bounded and )()( GAyU  , then the following integral formula of Cauchy type is true  






G

y GxdsyUxyMxU ,,)(),(=)(                                                                 (44) 

where  

).(
4

=),( *0 T
ri

tD
y

Du
r

e
ExyM









































−





 

 

 Here ),,(= 321 tttt  is the unit exterior normal, drawn at a point y , the surface G , 
r

e ri





4
−  is the fundamental 

solution of the Helmholtz equation in 3R .  
 We denote by )(wK  is an entire function taking real values for real w  ( −+ vuivuw ,;= real numbers) and 

satisfying the following conditions:  
 

.3,21,0,=,<<,<),(M=)(sup0,)( )(

1

pupuwKvuK pp

v

−


                      (45) 

  
We define a function ),( xy  when xy   by the following equality:  

 

.
cos)(

Im
)(2

1
=),(

0
22

33
2 



+−
− du

u

u

xw

wK

xK
xy






                                                        (46) 

  

Formula (44) is true if instead of 
r

e ri





4
−  we substitute the function  

),,(
4

=),( xyg
r

e
xy

ri

+−




                                                                                (47) 

 
where ),( xyg  is the regular solution of the Helmholtz equation with respect to the variable y , including the 

point xy = .  

 Then the integral formula (44) has the following form  
 






G

y GxdsyUxyNxU ,,)(),(=)(                                                                 (48) 

where  

( ) ).(),(=),( *0 TtD
y

DuxyExyN




























 
In the formula (1.40), choosing  
 

0,>),(exp=)(),(exp=)( 33  xxKwwK   

we get  


−

+−
−

0
22

3
2

,
cos)(exp

Im
2

=),(
3

du
u

u

xw

we
xy

x









                                                    (49) 

 
Then the integral formula (48) has the form:  
 






G

y GxdsyUxyNxU ,,)(),(=)(                                                            (50) 

where  

( ) ).(),(=),( *0 TtD
y

DuxyExyN
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 Theorem 4. Let )()( GAyU   it satisfy the inequality  

 

.1,)( TyyU                                                                                  (51) 

 If  

 

S

y GxdsyUxyNxU ,,)(),(=)(                                                                  (52) 

then the following estimate is true  
 

.1,>,)()()( 3 GxexCxUxU
x

−
−  

                                                             (53) 

  
Here and below functions bounded on compact subsets of the domain G , we denote by )(xC .  

  

Proof. Using the integral formula (50) and the equality (52), we obtain  
 

 +

T

y GxdsyUxyNxUxU .,)(),()(=)(   

  
Taking into account the inequality (51), we estimate the following  
 

.,),()(),(

)(),()()(







−

T

y

T

y

T

y

GxdsxyNdsyUxyN

dsyUxyNxUxU





                                                    (54) 

  

To do this, we estimate the integrals 21,=,
),(

,),( jds
y

xy
dsxy

T

y
jT

y  


 
  and y

T

dsxy
y

),(
3




  on the part T  of 

the plane 0=3y . 

 Separating the imaginary part of (49), we obtain  
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Taking into account equality (55), we have  
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To estimate the second integral, we use the equality  
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where  
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 Taking into account (57) - (58), we obtain  
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 Similarly we obtain  
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 To estimate the integral y

T

dsxy
y

),(
3




 , we use the equality  
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Taking into account the equality (61), we obtain  
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From the inequalities (56), (59), (60), and (62), we obtain (53).  
  
Theorem 4 is proved.  
 Corollary 3. The limiting equality  

lim ( ) = ( )U x U x
→

  

 
holds uniformly on each compact set in the domain G .  

  
Theorem 5. Let )()( GAyU   it satisfy condition (51), and on a smooth surface S  the inequality  

 

1,<<0,)( yU                                                                           (63) 

where 33 max= yy
Sy

.  

  
Then the following estimate is true  
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Proof. Using the integral formula (50), we have  
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 Taking inequality (57) into account, we estimate the first integral in (65).  
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To do this, we estimate the integrals 
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  on a smooth 

surface S . 

 Taking into account the equality (55), we have  
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                                                      (67) 

  
To estimate the second integral, we use equalities (3.10) and (3.11).  
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Similarly, using equalities (57) and (58) we obtain  
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Taking into account the equality (3.14), we obtain  
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 From (67) - (70), we obtain  
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 The following is known  
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Now taking into account (71) - (72), we have  
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 Choosing   from the equality  
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ln

1

3y
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we obtain the inequality (64). 
  
Theorem 5 is proved. 
 Let )()( GAyU   and instead )(yU  on S  with its approximation )(yf , respectively, with an error, 1<<0  ,  

 

 − )()(max yfyU
S

.  

 We put  
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 The following is true  
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 Theorem 6. Let )()( GAyU   on the part of the plane 0=3y  satisfy condition (51).  

 Then the following estimate is true  
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Proof. From the integral formulas (.3) and (75), we have  
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Now, repeating the proof of Theorems 4 and 5, we obtain  
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Hence, choosing   from (74), we obtain (76).  

  
Theorem 6 is proved. 
 Corollary 4. The limiting equality  

( )
0

lim ( ) = ( )U x U x 
→

  

 
holds uniformly on each compact set in the domain G .  

 Thus, the functional )()( xU   is a regularization of the solution of the problem (42) - (43).  

 

4. Conclusion  
 

In this work, on the basis of the Carleman matrix, explicitly constructed regularized solutions for matrix 
factorizations of the Helmholtz equation in two-dimensional and three-dimensional bounded domains. The 
resulting formula is an analogue of the classical formula of Riemann, Voltaire and Hadamard, which they 
constructed to solve the Cauchy problem in the theory of hyperbolic equations. An estimate of the stability of the 
solution of the Cauchy problem in the classical sense for matrix factorizations of the Helmholtz equation was 
presented. This problem can be considered when, instead of the exact data of the Cauchy problem we have their 
approximations with a given deviation in the uniform metric and under the assumption that the solution of the 
Cauchy problem is bounded on part T , of the boundary of the domain G . The regularized method defines a 

stable method for an approximate solution.  
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