Improving the system performance of DWDM-FSO through combination of adaptive detection threshold and modified OOK under atmospheric turbulence, crosstalk, and ASE noise
Main Article Content
Abstract
The article delves into the intricate design and analysis of the dense wavelength division multiplexing free-space optical (DWDM-FSO) communication systems, focusing on the impact of modified on-off keying (OOK) modulation on various factors such as noise, interchannel crosstalk, and atmospheric turbulence in different turbulence conditions. Through in-depth numerical studies, it has been observed that the utilization of adaptive detection threshold alongside OOK modulation can lead to the occurrence of an error floor within the DWDM-FSO link. This suggests that careful consideration and optimization of these modulation techniques are paramount in ensuring the efficiency and reliability of communication systems operating under varying atmospheric conditions. This study sheds light on the complexities and challenges involved in DWDM-FSO systems and underscores the importance of tailored modulation strategies to mitigate potential issues and enhance overall performance
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Chan, V. W. S. (2006). Free-space optical communications, IEEE/OSA J. Lightw. Technol., 24(12), 4750_4762.
Shapiro, J. H.& Harney, R. C. (1980). Burst-mode atmospheric optical communication, Proc. Nat. Telecommun. Conf., pp. 27.5.1_27.5.7.
J. Li, J. Q. Liu, and D. P. Taylor, `Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,'' IEEE Trans. Commun., vol. 55, no. 8, pp. 1598_1606, Aug. 2007.
Jurado-Navas, A., Garrido-Balsells, J. M., Castillo-Vazquez, M., Puerta-Notario, A. (2012). Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels, IET Commun., 6(4), 390–397.
Yang, L., Song, X., Cheng, J., Holzman J. F. (2016). Free-Space optical communications over lognormal fading channels using OOK with finite extinction ratios, IEEE Access, 4, 574-584.
Aladeloba, A. O., Woolfson, M. S., Phillips, A. J., (2013). WDM FSO network with turbulence-accentuated interchannel crosstalk, IEEE/OSA., vol. 5(6), 641–651.
Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, V., Matsumoto, M., (2009). 1.28 terabit/s (32 × 40 Gbit/s)WDM transmission system for free space optical communications, IEEE J. Sel. Areas. Commun., 27(9), 1639–1645.
Karp S. Gagliardi, R. M., Moran S. E., Stotts L. B., (1988). Optical Channels: Fibers, Clouds, Water and the Atmosphere. New York: Plenum.
Ramaswami R. & Sivarajan K. N., (2002). Optical Networks—A Pratical Perspective, 2nd ed. London: Academic.
Manor H. & Arnon S., (2003). Performance of an Optical Wireless Communication System as a Function of Wavelength, Applied Optics, 42(21), 4285-4294.
Arnon S. (2013). Optical Wireless Communications, Encyclopedia of Optical Engineering, 1866-1886.
Ansari N., Zhang J. (2013) Media access control and resource allocation for next generation passive optical networks, Springer.
Zuo T. J, Phillips A. J. (2009). Performance of burst mode receivers for optical digital pulse position Modulation in passive optical network application’, IET Optoelectron., 3, (3), 123-130.
Monroy I. T. & Tangdiongga E. (2002). Crosstalk in WDM Communication Networks. Norwell, MA: Kluwer Academic, 2002.
Andrews, L. C., Phillips, R. L. (2005). Laser beam propagation through random media’ (SPIE Press, Bellingham, Washington, 2nd edn.).
Majumdar, A. K. (2005). Free-space laser communication performance in the atmospheric channel’, J. Opt. Fiber Commun. Rep., 2, 345–396.
Willebrand H. & Ghuman B. S. (2001). Fiber Optics without Fiber,” IEEE, 2001.
Scott Bloom, (2002). Physics of free space optics,.
Engineering Applications, 2024, 3(2), 117-124
Elsayed E. E., Yousif B. B., Alzalabani M. M.(2018). Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation, Opt. Quantum Electron., 50(7), doi: 10.1007/s11082-018-1508-y.
Elsayed E. E. & Yousif B. B., (2020). Performance enhancement of M-ary pulse-position modulation for a wavelength division multiplexing free-space optical systems impaired by interchannel crosstalk, pointing error, and ASE noise, Opt. Commun., 475, doi: 10.1016/j.optcom.2020.126219.
Elsayed E. E. & Yousif B. B. (2020). Performance enhancement of the average spectral efficiency using an aperture averaging and spatial-coherence diversity based on the modified-PPM modulation for MISO FSO links,” Opt. Commun., 463, doi: 10.1016/j.optcom.2020.125463.
Elsayed, E. E. & Yousif , B. B. (2020). Performance evaluation and enhancement of the modified OOK based IM/DD techniques for hybrid fiber/FSO communication over WDM-PON systems, Opt. Quantum Electron., 52(9), doi: 10.1007/s11082-020-02497-0.
Yousif, B. B., Elsayed, E. E., Alzalabani, M. M. (2019). Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun., 436, 197–208. doi: 10.1016/j.optcom.2018.12.034.
Yousif, B. B. & Elsayed, E. E. (2019). Performance Enhancement of an Orbital-Angular-Momentum-Multiplexed Free-Space Optical Link under Atmospheric Turbulence Effects Using Spatial-Mode Multiplexing and Hybrid Diversity Based on Adaptive MIMO Equalization,” IEEE Access, 7, 84401–84412. doi: 10.1109/ACCESS.2019.2924531.
Elsayed E. E. & Yousif, B. B. (2020). Performance enhancement of hybrid diversity for M-ary modified pulse-position modulation and spatial modulation of MIMO-FSO systems under the atmospheric turbulence effects with geometric spreading, Opt. Quantum Electron., 52(12). doi: 10.1007/s11082-020-02612-1.