Energy Piles Design Parameters Optimization by using Fuzzy Logic

Main Article Content

Cetin INCEKARA

Abstract

Energy pile uses environmental-friendly technology, i.e. low carbon footprint and greenhouse gas (GHG) emissions, and cost-effective. The use of energy piles have been increasingly grown due to the combination of their transferring load from structure into the bearing layer and exchanging of heat with the soil, i.e. environmental benefits. Energy Piles are used renewable energy designed to utilize the relative constant temperature of the soil (soil energy: geothermal) that surrounds the energy piles for heating and cooling of buildings by the use of ground source heat pump (GSHP). Energy piles have been harvesting energy from the soil that surrounds the piles by using buried pipe networks which aims to reduce their carbon footprint and to increase the energy efficiency of the building, i.e. to have energy-efficient building. In the study the design parameters of energy piles (diameter/size/length of pile and type of foundation, length/diameter/thickness/location of pipe pattern inside energy piles, dimensions & the arrangement/pattern of energy piles and pipes, type of concrete, and fluid characteristics inside pipes, power & location of GSHP, diameter & length of energy piles, soil thermal properties & soil temperature, groundwater level,  depth to bedrock,  type of concrete, type of GSHP, type of fluid inside pipes, pipe configuration inside energy piles…, i.e. all related design parameters) that affect their design of energy pile and related pipes are evaluated by using fuzzy logic. The thermal efficiency of energy piles improves significantly by increasing the number & configuration of pipes inside the energy piles and by adding thermally conductive materials to the concrete within acceptable limits. By using Fuzzy method; the calculated criteria weights for energy piles design parameters’ weights are as follows: the most important evaluation dimension/main-criteria is “Soil thermal properties & Soil temperature”, the second important evaluation dimension is “Pipe configuration inside Energy Piles” and the third important evaluation dimension is “Diameter & length of energy piles”. By using energy piles buildings will have minimum carbon footprint and will be environmental-friendly green buildings.

Article Details

How to Cite
INCEKARA, C. (2024). Energy Piles Design Parameters Optimization by using Fuzzy Logic. Engineering Applications, 3(2), 147–156. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/1535
Section
Articles

References

Abdelaziz, S.L., Olgun, C.G., Martin, J.R. (2011). Design and Operational Considerations of Geotermal Energy Piles. Geo-Frontiers, ASCE Conference, Dallas, Texas.

Boënnec, O. (2009). Piling on the Energy. Geodrilling International (150): 25–28.

Bourne-Webb, P.J., Amatya, B., Soga, K., Amis, T., Davidson, C. and Payne, P. (2009). Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles, Geotechnique, 59(3), 237–248.

Bourne-Webb, P.J., Amatya, B.L. and Soga, K. (2012). A framework for understanding energy pile behaviour. Proceedings of the ICE – Geotechnical Engineering, http://dx.doi.org/10.1680/geng.10.00098.

Gao, J., Zhang, X., Liu, J., Li, K., and Yang, J. (2008). Numerical and experimental assessment of thermal performance of vertical energy piles: an application. Applied Energy, 85(10): 901–910.

Knellwolf, C., Peron, H., and Laloui, L. (2011). Geotechnical analysis of heat exchanger piles. Journal of Geotechnical and Geoenvironmental Engineering, 137(10): 890–902.

Laloui, L., Nuth, M., and Vulliet, L. (2006). Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, 763-781.

Lamarche, L., Kajl, S., and Beauchamp, B. (2010). A review of methods to evaluate borehole thermal resistances in geothermal heat pump systems. Geothermics, Vol. 39(2): 187–200.

Laoui, L., Nuth, M., Vulliet, L. (2006). Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, 8, 763-781.

Lennon, D.J., Watt, E., and Suckling, T.P. (2009). Energy piles in Scotland. In Proceedings of the 5th International Conference on Deep Foundations on Bored and Auger Piles, Frankfurt (Van Impe WF and Van Impe PO (eds)). Taylor and Francis, London, UK, 349–356.

Rotta, Loria, A.F., Gunawan, A., Shi C., Laloui, L., and W.W.Ng, C. (2015). Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomechanics for energy and the environment, 1(2015), 1-15.

Yavari, N., Tang, A.M., Pereira, J.M., Hassen, G. (2014). Experimental study on the mechanical behaviour of a heat exchanger pile in physical model. Acta Geotechnica, 9, 385-398.

Wang, C.L., Liu, H.L., and Kong, G.Q. (2016). Model tests of energy piles with and without a vertical load. Environmental Geotechnics, 3(EG4), 203-213.

Kumar Sahu A., Datta S. & Mahapatra S.S. (2016). Evaluation and selection of resilient suppliers in fuzzy environment. Benchmarking: An International Journal, 23(3), 651-673.

Satrovic, E. (2018). The Human Development Relies on Renewable Energy: Evidence from Turkey. 3rd International Energy & Engineering Congress, 19-27.Sherwood, D., 2014. The Valuation of Easements. Right of Way Magazine, November/December: 36-39.

Incekara, C. O. & Ogulata, S. N. (2011). Enerji darboğazında ülkemizin alternatif enerji kaynakları. Sosyal ve Beşeri Bilimler Dergisi, 3(1).

Incekara, C. O. & Ogulata, S. N. (2012). EU and Turkey’s Energy Strategies. International Journal of Economics and Finance Studies, 4(2), 35-43.

Incekara, C. O & Ogulata, S. N. (2017). Turkey’s energy planning considering global environmental concerns. Ecological Engineering. Elsevier, A.B.D., 589-595.

Incekara, C.O. (2018). Ülkemizdeki Enerji Santral Yatırımlarının AHP Yöntemi ile Değerlendirilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 33 (4), 185-196.

Incekara, C.O. (2019a). Use of an Optimization Model for Optimization of Turkey’s Energy Management by inclusion of Renewable Energy Sources. International Journal of Environmental Science and Technology, Springer, 121-133.

Incekara, C.O. (2019b). Türkiye ve AB’nin Enerji Stratejileri ve Politikaları. Journal of Turkish Operations Management, 3(2), 298-313.

Incekara, C.O. (2019c). Turkey's Energy Management Plan by Using Fuzzy Modeling Approach. Scholars' Press, ISBN-10: 6138829697, Book, 38-52.

Incekara, C.O. (2020a). Türkiye’ nin Elektrik Üretiminde Doğalgaz Talep Tahminleri. Journal of Turkish Operations Management, 3(2), 298-313.

Incekara, C.O. (2020b). Evaluation of Turkey’s International Energy Projects by Using Fuzzy Multi-Criteria Decision Making Methods. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, Cilt 7, Sayı 9 (2020), 206-217. (https://doi.org/10.38065/euroasiaorg.143)

Incekara, C.O. (2020c). Turkey's natural gas demand projections. EJONS Internatıonal Journal, Vol. 4,No. 15 (2020): EJONS Journal, 489-505. (https://doi.org/10.38063/ejons.269)

Incekara, C.O. (2020d). Bulanık Mantık ile Sanayii Sektöründe ISO 50001 Enerji Yönetim Sistemi Uygulaması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6), 991-1013.

Incekara, C.O. (2020e). Enerji Sektöründe Faaliyet Gösteren Bir İşletmede İş Sağlığı ve Güvenliği Yönetim Sistemi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 4(1), 152-177.

Incekara, C.O. (2021a). Bulanık TOPSIS ve Bulanık VIKOR yöntemleriyle bir enerji şirketinde kurumsal hafızanın oluşturulması. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, Cilt 8, Sayı 17, (2021), 1-20. (https://doi.org/10.38065/euroasiaorg.589)

Incekara, C.O. (2021b). Post-COVID-19 Ergonomic School Furniture Design under Fuzzy Logic. Work, 69, 1197–1208.

Incekara, C.O. (2021c). Dünyanın ve Türkiye’ nin Doğal Gaz Talep Senaryosu. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, Cilt 8, Sayı 17 (2021), 44-57. (https://doi.org/10.38065/euroasiaorg.610)

Incekara, C.O. (2021d). Global Natural Gas Demand Projections under Fuzzy Logic. EJONS Internatıonal Journal, Vol. 5, No. 18 (2021): EJONS Journal, 367-385. (https://doi.org/10.38063/ejons.430)

Incekara, C.O. (2022a). Designing Ergonomic Post-Covid-19 School Furniture. South African Journal of Industrial Engineering, 33(2), 211–224.

Incekara, C.O. (2022b). Sigorta Eksperlerinin Dask Sigortası Değerlendirmelerinin Bulanık Mantık Altında İncelenmesi. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, Cilt 9, Sayı 21 (2022), 14-41. (https://doi.org/10.38065/euroasiaorg.952)

Incekara, C.O. & Lala, S. (2022c). Enerji projelerinde arazi edinim faaliyetleri ve arazi değerlemesi. Geomatik, 8(1), 61-71.

Incekara, C. O. (2023). Industrial internet of things (IIoT) in energy sector. Advanced Engineering Days (AED), 5, 181-184.

Incekara, C. O. (2023). Internet of Things (IoT) in GIS. Advanced Engineering Days (AED), 6, 53-57.

Incekara, C. O. (2023). Intelligent digital twin for energy industry in AIoT networks. Advanced Engineering Days (AED), 7, 36-40.