IInvestigation of the effects of different curing conditions and sodium content on the mechanical and durability properties of fly ash based geopolymer mortar with various proportions of silica fume substituted

Main Article Content

Ela Bahsude Gorur Avsaroglu
Mustafa Eken
Emre Eser

Abstract

 






In this study, F class fly ash-based geopolymer mortar samples with 8%, 10%, and 12% NaOH concentrations were created by replacing 1%, 2%, 3%, 4% and 5% silica fume. Geopolymer mortar samples were thermally cured at 65, 75, and 85 ° C for 24, 48, and 72 hours. Geopolymer mortar samples were subjected to tests for workability, compressive strength, flexural strength, resistance to high temperatures, and abrasion. Geopolymer mortar samples were subjected to a high temperature compressive strength test at 200, 400, 600, 800, and 1000 °C. Mechanical and durability tests conducted on the samples of thermally cured geopolymer mortar indicate that a specific amount of silica fume substitution increases the strength. Additionally, it is observed that the addition of silica fume contributes positively to the machinability. At all concentration ratios, the mortar sample containing 4% silica fume and subjected to thermal curing at 85°C for 72 hours had the highest compressive and flexural strength values. The maximum compressive strength values achieved at high temperature were also obtained in the sample with 4% silica fume substitution. After testing the produced mortar samples, it has been concluded that 4% silica fume substitution based on Class F fly ash is the optimal value.





Article Details

How to Cite
Gorur Avsaroglu, E. B., Eken, M., & Eser, E. (2024). IInvestigation of the effects of different curing conditions and sodium content on the mechanical and durability properties of fly ash based geopolymer mortar with various proportions of silica fume substituted. Engineering Applications, 3(3), 226–247. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/1598
Section
Articles

References

Li, H.X., Jiang, Z.W., Yang, X.J., Yu, L., Zhang, G.F., Wu, J.G. & Liu, X.Y., (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement, Journal of Cleaner Production, 93, 56-64. https://doi.org/10.1016/j.jclepro.2015.01.027

Qu, C., Qin, Y. & Wang, T., (2024). From cement to geopoymers: Performances and sustainability advantages and sustainabiklity advantages of ambient curing, Journal of Building Engineering, 91, 109555. https://doi.org/10.1016/j.jobe.2024.109555

Aliabdo, A.A., Elmoaty, Abd M. & Emam, M.A., (2019). Factors affecting the mechanical properties of alkali-activated ground granulated blast furnace slag concrete, Construction and Building Materials, 197, p.p. 339–355. https://doi.org/10.1016/j.conbuildmat.2018.11.086

Ilcan, H., Demirbaş, A. O. Ulugöl, H. & Sahmaran. M., (2024). Low-alkaline activated construction and demolition waste-based geoplymers, Construction and Building Materials, 411, 134546. https://doi.org/10.1016/j.conbuildmat.2023.134546

Davidovits, J., (1994). Properties of geopolymers cements, in: P. Krivenko (Ed.), Proceedings of First International Conference on Alkaline Cements and Concretes, pp. 131–149 Kiev, Ukraine.

Acar, C. A., Celik, A. I., Kayabasi, R., Sener, A., Ozdoner, N. & Ozkilic, Y. O., (2023). Production of perlite-based-aerated geoplymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings, Journal of Materials Research and Technology, 24, 81-99. https://doi.org/10.1016/j.jmrt.2023.02.179

Luna-Galiano, Y., Fernandez Pereira, C. & Vale, J., (2011). Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers, Journal of Hazardous Materials, 185 (1), 373–381. https://doi.org/10.1016/j.jhazmat.2010.08.127

Davidovits, J., (1991). Geopolymer, Inorganic polymeric new materials, J. Therm. Anal. Calorim. 37, 1633–1656.

Meskhi B., Beskopylny A. N., Stel’makh S. A., Shcherban’ E. M., Mailyan L. R., Shilov A. A., El’shaeva D., Shilova K., Karalar M. & Aksoylu C., (2023). Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials., 16(10), 3792. https://doi.org/10.3390/ma16103792.

Tanan Chub-uppakarn, T., Chompoorat, T., Thepumong T., Sae-Long, W., Khamplod, A. & Chaiprapat, S. (2023). Influence of partial substitution of metakaolin by palm oil fuel ash and alumina waste ash on compressive strength and microstructure in metakaolin-based geopolymer mortar, Case Studies in Construction Materials, 19, e02519. https://doi.org/10.1016/j.cscm.2023.e02519.

Luna-Galiano, Y., Leiva, C., Arenas, C., Arroyo, F., Vilches, L.F., Fernández Pereira & Villegas, C., R., (2017). Behaviour of fly ash-based geopolymer panels under fire, Waste. Biomass. Valor. 8 (7), 2485–2494, https://doi.org/10.1007/s12649-016- 9803.

Borges P.H.R., Banthia N., & Alcamand H.A., et al. (2016). Performance of Blended Metakaolin/Blastfurnace Slag Alkaliactivated Mortars. Cement Concrete Composites, 71, 42–52. https://doi.org/10.1016/j.cemconcomp.2016.04.008

Fan F, Liu Z, Xu G, Peng, H. & Cai, C. S. (2018). Mechanical and thermal properties of fly ash based geopolymers. Construction and Building Materials, 160, 66–81. https://doi.org/10.1016/j.conbuildmat.2017.11.023

Kaur K, Singh J & Kaur M. (2018). Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator, Construction and Building Materials, 169, 188–192. https://doi.org/10.1016/j.conbuildmat.2018.02.200

Okoye, F.N., Prakash, S. & Singh, N.B. (2017). Durability of fly ash based geopolymer concrete in the presence of silica fume, Journal of Cleaner Production, 149, 1062–1067. https://doi.org/10.1016/j.jclepro.2017.02.176

Celik, A. I., Ozkılıç, Y. O., Bahrami A. & Hakeem, I. Y. (2023). Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps, Case Studies in Construction Materials, 19, e02548. https://doi.org/10.1016/j.cscm.2023.e02548.

Nochaiya, T., Wongkeo, W. & Chaipanich, A. (2010). Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete, Fuel, 89 (3), 768–774. https://doi.org/10.1016/j.fuel.2009.10.003

Liu, J. & Wang, D. (2017). Influence of steel slag-silica fume composite mineral admixture on the properties of concrete, Powder Technology, 320, 230– 238. https://doi.org/10.1016/j.powtec.2017.07.052

Chindaprasirt, P., Paisitsrisawat, P. & Rattabasak, U. (2014). Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali activated composite, Advanced Powder Technology, 25 (3), 1087–1093. https://doi.org/10.1016/j.apt.2014.02.007

Mijarsh, M.J.A., Johari, M.A.M. & Ahmad, Z.A. (2015). Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives, Cement and Concrete Composites, 60, 65–81. https://doi.org/10.1016/j.cemconcomp.2015.02.007

Wang,Y & Zhao, J. (2018). Comparative study on flame retardancy of silica fume-based geopolymer activated by different activators, Journal of Alloys and Compounds, 743, 108-114. https://doi.org/10.1016/j.jallcom.2018.01.302

Wang, Y. & Zhao, J. (2018). Preliminary study on decanoic/palmitic eutectic mixture modified silica fume geopolymer-based coating for flame retardant plywood, Construction and Building Materials, 189, 1-7. https://doi.org/10.1016/j.conbuildmat.2018.08.205

Duan, P., Yan, C., Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle, Cement and Concrete Composites 78, 108-119. https://doi.org/10.1016/j.cemconcomp.2017.01.009

Uysal , M., Al-Mashhadani, M.M., Aygormez, Y. & Canpolat, O. (2018) Effect of using colemanite waste and silica fume as partial substitution on the performance of metakaolin-based geopolymer mortars, Construction and Building Materials,176, 271–282. https://doi.org/10.1016/j.conbuildmat.2018.05.034

Ekinci, E., Türkmen, I., Kantarci, F., & Karakoç, M.B. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios, Construction and Building Materials, 201, 257-267. https://doi.org/10.1016/j.conbuildmat.2018.12.204

Alanazi, H., Hu, J., & Kim, Y. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature, Construction and Building Materials, 197, 747-756. https://doi.org/10.1016/j.conbuildmat.2018.11.172

Cheah, C.B., Tan, L.E. & Ramli, M. (2019). The engineering properties and microstructure of sodium carbonate activated fly ash/slag blended mortars with silica fume, Composites Part B: Engineering 160, 558-572. https://doi.org/10.1016/j.compositesb.2018.12.056

Sayed, M. & Zeedan, S.R. (2012). Green binding material using alkali activated blast furnace slag with silica fume, HBRC Journal, 8 (3), 177-184. https://doi.org/10.1016/j.hbrcj.2012.10.003

Chindaprasirt, P., Paisitsrisawat, P. & Rattabasak, U. (2014). Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali activated composite, Adv. Powder Technol. 25 (3), 1087-1093. https://doi.org/10.1016/j.apt.2014.02.007

Okoye, F.N., Durgaprasad, J. & Singh, N.B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, Ceramics International, 42 (2), 3000-3006. https://doi.org/10.1016/j.ceramint.2015.10.084

Luhar, S., Nicolaides, D. & Luhar, I. (2021). Fire resistance behavior of geopolymer concrete: an overview, Buildings 11 (3), 82. https://doi.org/10.3390/buildings11030082

Srividya, T., Kannan Rajkumar, P.R., Sivasakthi, M., Sujitha, A. & R. Jeyalakshmi, (2022). A state-of-the-art on development of geopolymer concrete and its field applications, Case Studies in Construction Materials 16, e00812. https://doi.org/10.1016/j.cscm.2021.e00812

Guerrieri, M., Sanjayan J. & Collins, F. (2009). Residual compressive behavior of alkalia ctivated concrete exposed to elevated temperatures, Fire and Materials 33 (1), 51–62. https://doi.org/10.1002/fam.983

Sudarshan, M.S. & Ranganath, R.V. (2011). Properties of fly ash based geopolymer concrete exposed to sustained elevated temperatures, Advanced Materials Research, 250-253, 962-968. DOI:10.4028/www.scientific.net/AMR.250-253.962

Abdulkareem, O. A., Abdullah, M. M. A. B., Hussin, K., Ismail, K.N. & Binhussain, M. (2013). Mechanical and microstructural evaluations of lightweight aggregate geopolymer concrete before and after exposed to elevated temperatures, Materials 6 (10), 4450–4461. DOI:10.3390/ma6104450

Park, S.M., Jang, J.G., Lee, N.K. & Lee, H.K. (2016). Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures, Cement and Concrete Research, 89, 72–79. https://doi.org/10.1016/j.cemconres.2016.08.004

Saavedra, W.G.V. & Guti´errez, R.M. de. (2017). Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures, Construction and Building Materials, 154, 229-235. https://doi.org/10.1016/j.conbuildmat.2017.07.208

Zhang, H., Li, L., Yuan, C., Wang, Q., Sarker, P.K., Shi, X. (2020). Deterioration of ambient cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength, Construction and Building Materials 262, 120924. https://doi.org/10.1016/j.conbuildmat.2020.120924

Sevinc, A.H., Durgun, M.Y. (2020). Properties of high-calcium fly ash-based geopolymer concretes improved with high-silica sources, Construction and building materials, 261, 120014. https://doi.org/10.1016/j.conbuildmat.2020.120924

Zhao, J., Wang, K., Wang, S., Wang, Z., Yang, Z., Shumuye, E.D. & Gong, X. (2021). Effect of elevated temperature on mechanical properties of high-volume fly ash-based geopolymer concrete, mortar and paste cured at room temperature, Polymers 13 (9), 1473. https://doi.org/10.3390/polym13091473

Ibraheem, M., Butt, F., Waqas, R.M., Hussain, K., Tufail, R.F., Ahmad, N., Usanova, K. & Musarat, M.A. (2021). Mechanical and microstructural characterization of quarry rock dust incorporated steel fiber reinforced geopolymer concrete and residual properties after exposure to elevated temperatures., Materials, 14 (22), 6890. https://doi.org/10.3390/ma14226890

Topal, O., Karakoç, M. B. & Ozcan, A. (2021). Effects of elevated temperatures on the properties of ground granulated blast furnace slag (GGBFS) based geopolymer concretes containing recycled concrete aggregate, European Journal of Environmental and Civil Engineering, 26(10), 4847–4862. https://doi.org/10.1080/19648189.2021.1871658

Tayeh, B.A., Zeyad, A.M., Agwa, I.S. & Amin, M. (2021). Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete, Case Studies in Construction Materials, 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673

Kantarci, F., Türkmen, I. & Ekinci, E. (2021). Improving elevated temperature performance of geopolymer concrete utilizing nano-silica, micro-silica and styrene-butadiene latex, Construction and Building Materials 286, 122980. https://doi.org/10.1016/j.conbuildmat.2021.122980

Huang, L., Liu, J.C., Cai, R. & Ye, H. (2021). Mechanical degradation of ultra-high strength alkali-activated concrete subjected to repeated loading and elevated temperatures, Cement and Concrete Composites, 121, 104083. https://doi.org/10.1016/j.cemconcomp.2021.104083

Memis, S. & Bilal, M.A.M. (2022). Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust, Environmental Science and Pollution Research 29 (11), 15876–15895. https://doi.org/10.1007/s11356-021-16869-w

Turkey, F. A., Beddu, S. Bt., Ahmed, A. N. & Al-Hubboubi, S. K. (2022). Effect of high temperatures on the properties of lightweight geopolymer concrete based fly ash and glass powder mixtures, Case Studies in Construction Materials, 17, e01489 https://doi.org/10.1016/j.cscm.2022.e01489

Bayrak, B., Alcan, H. G., Tanyıldızı, M., Kaplan, G., İpek, S., Aydın, A. C. & E. Güneyisi. (2024). Effects of silica fume and rice husk ash contents on engineering properties and high-temperature resistance of slag-based prepacked geopolymers, Journal of Building Engineering, 92, 109746 https://doi.org/10.1016/j.jobe.2024.109746

Gultekin, A. & Ramyar, K. (2023). Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing, Construction and Building Materials, 365, 130059 https://doi.org/10.1016/j.conbuildmat.2022.130059

TSE EN 450-1, Fly Ash- Used in Concrete- Part 1 Description, properties and conformity criteria, Turkish Standards Institute, Ankara, 2015.

TS EN 13263-1+A1, Silica Fume-Used in Concrete-Part1: Definitions, requirements and appropriate criteria, Turkish Standards Institute, Ankara, 2011.

TS EN 196-1, Cement Test Methods-Part 1: Determination of strength, Turkish Standards Institute, Ankara, 2016.

TS EN 1015-11, Masonry mortar- Test methods Chapter 11- Determination of tensile and compressive strength of hardened mortar in bending, Turkish Standards Institute, Ankara, 2020.

TS 2824 EN 1338, 2005. Concrete pavement blocks for flooring - Required conditions and test methods, Turkish Standards Institute, Ankara.

TS EN 1015-3, 2000. Masonry mortar- Test methods- Part 3: Determination of fresh mortar consistency (with spreading table), Turkish Standards Institute, Ankara.

Durak U., Karahan O., Uzal B.., Ilkentapar, S. & Atis, C.D., (2021). Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Structural Concrete, 22 (S1), E352–E367. https://doi.org/10.1002/suco.201900479

Sathonsaowaphak A., Chindaprasirt P. & Pimraksa K., (2009). Workability and strength of lignite bottom ash geopolymer mortar, Journal of Hazardous Materials, 168 (1), 44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120

Nath P & Sarker P. K. (2014). Efect of GGBFS on setting, workability and early strength properties of fy ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080

Anuar, K. A., Ridzuan, A. R. M. & Ismail, S. (2011). Strength characteristics of geopolymer concrete containing recycled concrete aggregate, International Journal of Civil & Environmental Engineering, 11 (1), 59-62.

Mangat, P. S. & Ojedokun, O. (2018). Influence of curing on pore properties and strength of alkali activated mortars, Construction and Building Materials, 188, 337-348. https://doi.org/10.1016/j.conbuildmat.2018.07.180

Toniolo, N., Rincón, A., Roether, J.A., Ercole, P., Bernardo, E. & Boccaccini, A.R. (2018). Extensive reuse of soda-lime waste glass in fly ash-based geopolymers, Construction and Building Materials, 188, 1077-1084. https://doi.org/10.1016/j.conbuildmat.2018.08.096

Elyamany, H.E., Abd Elmoaty, A.E.M. & Elshaboury, A.M. (2018). Setting time and 7-day strength of geopolymer mortar with various binders, Construction and Building Materials, 187, 974–983. https://doi.org/10.1016/j.conbuildmat.2018.08.025

Ilkentapar, S., Ozsoy A., (2022). Investigation of mechanical properties, high‑temperature resistance and microstructural properties of diatomite‑containing geopolymer mortars, Arabian Journal of Geosciences, 15 (6), 502, https://doi.org/10.1007/s12517-022-09824-7.

Zannerni, G. M., Fattah, K. P. & Al-Tamimi, A. K. (2020). Ambient-cured geopolymer concrete with single alkali activator, Sustainable Materials and Technologies, 23, e00131, https://doi.org/10.1016/j.susmat.2019.e00131

Chindaprasirt, P., Paisitsrisawat, P. & Rattanasak, U. (2014). Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali-Activated composite, Advanced Powder Technology, 25(3), 1087–1093. https://doi.org/10.1016/j.apt.2014.02.007

Hu S., Wang H., Zhang G. & Ding Q, (2008). Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cement and Concrete Composites, 30 (3), 239-244. https://doi.org/10.1016/j.cemconcomp.2007.04.004

Bilim C, Karahan O, Atis CD & Ilkentapar S., (2013), Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions, Materials & Design, 44, 540–547. https://doi.org/10.1016/j.matdes.2012.08.049

Ilkentapar S, Atis C. D. , Karahan O. & Gorur Avsaroglu E. B. (2017), Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar, Construction and Building Materials, 151, 363–369. https://doi.org/10.1016/j.conbuildmat.2017.06.041

Durak U, Ilkentapar S, Karahan O, Uzal, B. &Atis, C. D., (2021). A new parameter influencing the reaction kinetics and properties of fly ash based geopolymers: a pre-rest period before heat curing, Journal of Building Engineering, 35, 102023. https://doi.org/10.1016/j.jobe.2020.102023

Simsek, O. (2009). “Concrete and Concrete Technology”, Ankara, Seckin Publishing (3rd edition) ,161-164.

Bingöl, A. & Rustem, Gul, R., (2009). A Review on Reinforcement-Concrete Adherence, Effects of High Temperatures on Concrete Strength and Adherence, Tubav Journal of Science, 2(2), 211-230.

Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A. & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Materials & Design, 64, 261-269. https://doi.org/10.1016/j.matdes.2014.07.042

Farahani, A., Taghaddos, H. & Shekarchi, M. (2015). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment, Cement and Concrete Composites, 59, 10-17. https://doi.org/10.1016/j.cemconcomp.2015.03.006

Lilkov, V., Rostovsky, I., Petrov, O., Tzvetanova, Y. & P. Savov, (2014). Long term study of hardened cement pastes containing silica fume and fly ash, Construction and Building Materials 60, 48-56. https://doi.org/10.1016/j.conbuildmat.2014.02.045

Zhang, H. Y., Kodur, V., Wu, B., Cao, L. & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Construction and Building Materials, 109, 17-24. https://doi.org/10.1016/j.conbuildmat.2016.01.043

Ergeshov, Z. (2021). Investigation of the effects of silica fume substitution on physical and mechanical properties of fly ash based geopolymer mortars. MSc Thesis, Erciyes University Graduate School of Natural and Applied Sciences, Department of Civil Engineering.

Bakharev, T., (2006). Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cement and Concrete Research, 36 (6), 1134-1147. https://doi.org/10.1016/j.cemconres.2006.03.022

Barbosa, V.F.F. & Mackenzie, K.J.D. (2003). Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Materials Research Bulletin, 38 (2), 319–331. https://doi.org/10.1016/S0025-5408(02)01022-X

Skvara, F., Jilek, T. & Kopecky, L. (2005). Geopolymer materials based on fly ash, Ceramics-Silikáty, 49 (3), 195–204.

Krivenko, P.V. & Kovalchuk, G.Y., (2007). Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix, Journal of Material Science, 42, 2944–2952. https://doi.org/10.1007/s10853-006-0528-3

Abdulkareem, O. A., Al Bakri, A. M., Kamarudin, H., Nizar, I. K. & Ala’eddin, A. S. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377-387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

Zhang, Y.J., Li, S., Wang, Y.C. & Xu, D.L., (2012). “Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature”, Journal of Non-Crystalline Solids, 358 (3), 620–624. https://doi.org/10.1016/j.jnoncrysol.2011.11.006

Zhang, H.Y., Kodur, V., Wu, B., Cao, L. & Qi, S.L., (2015). “Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash”, Journal of Materials in Civil Engineering, 28(2), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001359

Messina, F., Ferone, C., Colangelo, F. F., Roviello, G. &Cioffi, R., (2018). Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physico-mechanical properties and residual strength after exposure at elevated temperature, Composites Part B-Engineering, 132, 161-169. https://doi.org/10.1016/j.compositesb.2017.08.012

Lahoti M., Wong K. K., Yang E. H. & Tan K. H., (2018) Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature, Ceramics International, 44(5) 5726– 5734. https://doi.org/10.1016/j.ceramint.2017.12.226

Dehghani, A., Aslani, F. & Panah, N. G., (2021) Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties, Construction and Building Materials, 293, https://doi.org/10.1016/j.conbuildmat.2021.123527

Saridemir, M. & Celikten, S., (2023), Effects of Ms modulus, Na concentration and fly ash content on properties of vapour-cured geopolymer mortars exposed to high temperatures, Construction and Building Materials, 363, https://doi.org/10.1016/j.conbuildmat.2022.129868

Luo, Y, Klima, K. M., Brouwers, H. J. H. & Yu, O., (2022), Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior, Cement and Concrete Composites, 129, https://doi.org/10.1016/j.cemconcomp.2022.104468Iban.