LA-ICP-MS trace element analysis of magnetite from Gökçedoğan Cu-Zn deposit (Kargı-Çorum) in Central Pontides, Turkey

Main Article Content

Cihan Yalçın
Nurullah Hanilçi
Mustafa Kumral
Mustafa Kaya

Abstract

Magnetite is a common mineral in paragenesis in many mineral deposits, and it is recognized that it covers the conditions of the environment in which it is formed due to its physico-chemical properties. For this reason, chemical compositions of magnetites are used in researches on the origin and formation of ore deposits. Gökçedoğan Cu-Zn massive sulfide deposit (VMS) in the Central Pontides is a syngenetic stratiform deposit observed in metamorphic rocks. The ore paragenesis contains pyrite, chalcopyrite, sphalerite, magnetite, hematite, covellite, malachite, and goethite respectively. Because of its physicochemical properties, in-situ laser-ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) analysis of magnetite in the ore zone was performed and a new perspective was promoted to the deposit. From analysis Fe is between 72.06-73.39% and O is between 20.78-21.15% respectively. V content is approximately higher than the other trace elements. Analyzes were checked out in both Cu/(Si+Ca)-Al(Zn+Ca) and Cu/Ca-Al(Si+Zn+Ca) diagrams and it was decided that they exhibit similar distributions to VMS deposits in the world. In the spider diagram drew up, it has been showed that Gökçedoğan VMS deposit is close to Besshi Type Windy Craggy deposit with its high Si values.

Article Details

How to Cite
Yalçın, C. ., Hanilçi, N. ., Kumral, M. ., & Kaya, M. . (2022). LA-ICP-MS trace element analysis of magnetite from Gökçedoğan Cu-Zn deposit (Kargı-Çorum) in Central Pontides, Turkey. Engineering Applications, 1(1), 11–18. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/313
Section
Articles

References

Ramdohr, P. (1980). The ore minerals and their intergrowths. Pergamon, New York.

Scheka, S. A., Platkov, A. V., Vezhosek, A. A., Levashov, G. B., & Oktyabrsky, R. A. (1980). The trace element paragenesis of magnetite. Nauka, Moscow, p 147.

Nadoll, P., Angerer, T., Mauk, J. L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews., 61, 1–32. https://doi.org/ 10.1016/j.oregeorev.2013.12.013.

Lindsley, D. H. (1976). The crystal chemistry and structure of oxideminerals as exemplified by the Fe-Ti oxides. In: Rumble III, D (ed) Oxide Minerals. Reviews in Mineralogy: Mineralogical Society of America, pp 1–60.

Wechsler, B. A., Lindsley, D. H., & Prewitt, C. T. (1984). Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). Am Mineral, 69, 754–770.

Bowles, J. F. W., Howie, R. A., Vaughan, D. J., & Zussman, J. (2011). Rock-forming minerals- non-silicates: oxides, hydroxides and sulphides, Second edn. Geological Society, London.

Dupuis, C., & Beaudoin, G. (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos, 46, 319–335.

Dare, S. A., Barnes, S. J., Beaudoin, G., M´eric, J., Boutroy, E., & Potvin-Doucet, C. (2014). Trace elements in magnetite as petrogenetic indicators. Mineral. Deposita, 49 (7), 785–796. https://doi.org/10.1007/s00126-014-0529-0.

Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., & Gardoll, S. J. (2010). Sediment-hosted lead-zinc deposits in Earth history. Econ. Geol. 105 (3), 593–625. https://doi.org/10.2113/gsecongeo.105.3.593.

Carew, M. J. (2004). Controls on Cu-Au mineralization and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. Unpublished Ph.D thesis. James Cook University, Queensland

Gosselin, P., Beaudoin, G., & Jébrak, M. (2006). Application of the geochemical signature of iron oxides to mineral exploration. GAC-MAC Annual Meeting Prog Abs 31.

Singoyi, B., Danyushevsky, L., Davidson, G. J., Large, R., & Zaw, K. (2006). Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. SEG Keystone Conference, Denver, USA.

Beaudoin, G., Dupuis, C., Gosselin, P., & Jébrak, M. (2007). Mineral chemistry of iron oxides: application to mineral exploration. In: Andrew CJ (ed) Ninth Biennial SGA meeting. SGA, Dublin, pp 497–500.

Xiao, B., Chen, H., Wang, Y., Han, J., Xu, C., & Yang, J. (2018). Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the eastern Tianshan. Ore Geol Rev, 100:168–182.

Lockington, J. A., Cook, N. J., & Ciobanu, C. L. (2014). Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Miner. Petrol., 108 (6), 873–890.

Franklin, J. M., Gibson, H. L., Jonasson, I. R., & Galley, A. G. (2005). Volcanogenic Massive Sulphide Deposits. 100th Anniversary Volume. The Economic Geology Publishing Company, pp. 523–560.

Pirajno, F., (2009). Hydrothermal Processes and Mineral System. Springer, Perth 1–1250.

Fox, J. S. (1984). Besshi-type volcanogenic massive sulphide deposits e a review. Canadian Institute of Mining and Metallurgy Bulletin, 77, 57e68.

Peter, J. M. & Scott, S. D. (1999). Windy Craggy, Northwestern British Columbia: The world‟s largest Besshi-type deposit – In: Barrie, C. T. & Hannington, M. D. (eds.), Volcanic-associated massive sulfi de deposits. Processes and examples in modern and ancient settings. Rev. Econ. Geol., 8: 261–295.

MacLean, W. H., & Kranidiotis, P. (1987). Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps dodge massive sulfide deposit Matagami, Quebec. Econ Geol, 82:951–962.

Sillitoe, R. H. (2010). Porphyry copper systems. Econ Geol, 105:3–41.

Zhong, R. C., Li, W. B., Chen, Y. J., & Huo, H. L. (2012). Ore-forming conditions and genesis of the Huogeqi Cu–Pb–Zn–Fe deposit in the northern margin of the North China Craton: evidence from ore petrologic characteristics. Ore Geology Reviews, 44, 107–120.

Zhou, Z., Tang, H., Chen, Y. C. Z. (2017). Trace elements ofmagnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China: a case study of seafloor hydrothermal iron deposits. Ore Geol Rev 80: 1191–1205.

Bryndzia L. T, & Scott, S. D. (1987). The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study. Am J Sci, 287: 50–76.

Çiftci, E., & Hagni, R. D. (2005). Mineralogy of the Lahanos deposit a Kuroko-type volcanogenic massive sulfide deposit from the eastern Pontides (Giresun, NE Turkey). Geol. Bull. Turk., 48 (1), 55-64.

Eyüboğlu, Y., Santosh, M., Keewook, Y., Tüysüz, N., & Korkmaz, S. (2014). The Eastern Black Sea-type volcanogenic massive sulfide deposits: geochemistry, zircon U-Pb geochronology and an overview of the geodynamics of ore genesis. Ore Geology Reviews, 59, 29-54.

Revan, M. K., Genc, Y., Maslennikov, V. V., Maslennikova, S. P., Large, R. R., & Danyushevsky, L. V. (2014). Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the Eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63, 129–149.

Ustaomer, T., & Robertson, A. H. F., (1994). Late Palaeozoic marginal basin and subduction accretion: the Palaeotethyan Kure Complex, Central Pontides, northern Turkey. J. Geo. Soc London, 151, 291–305.

Yalçın, C. (2018). Geology and formation of the Gökçedoğan (Kargi-Çorum) Cu ± Zn mineralization. PhD Thesis, İstanbul University, Institute of Graduate Studies in Science and Engineering, 301.

Günay, K., Dönmez, C., Oyan, V., Yıldırım, N., & Çiftçi, E. (2018). Geology and geochemistry of sediment-hosted hanönü massive sulfide deposit (Kastamonu – Turkey). Ore Geology Reviews, 101, 652–674.

Yalçın, C., Hanilçi, N., Kumral, M., & Kaya, M. (2022). Formation and Tectonic Evolution of Structural Slices in Eastern Kargi Massif (Çorum, Turkey). Bulletin of the Mineral Research and Exploration. Doi: 10.19111/bulletinofmre.1067604.

Yalçın, C., Hanilçi, N., Kumral, M., & Kaya, M. (2022). Magnetite Geochemistry of Beshhi-typeCu-Zn Mineralizations in Central Pontides (Kargı-Çorum). 2nd Advanced Engineering Days, 30-32.

Mukherjee, I. & Large, R. (2017). Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geology Reviews. 81, 1249–1270.

Hu, X., Chen, H.Y., Zhao, L.D., Han, J.S. & Xia, X.P. (2017). Magnetite geochemistry of the Longqiao and Tieshan Fe–(Cu) deposits in the Middle-Lower Yangtze River Belt: Implications for deposit type and ore genesis. Ore Geology Reviews, 89, 822–835.

Kampmann, T. C., Jansson, N. F., Stephens, M. B., Olin, P. H., Gilbert, S. & Wanhainen, C. (2018). Syn-tectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden. Ore Geology Reviews, 96, 48–71.

Li, D. F., Fu, Y., Sun, X. M., Hollings, P., Liao, J. L., Liu, Q. F., Feng, Y. Z., Liu, Y. & Lai, C. (2018). LA-ICP-MS trace element mapping: Element mobility of hydrothermal magnetite from the giant Beiya Fe-Au skarn deposit, SW China. Ore Geology Reviews, 92, 463–474.

Robertson, A. H. F. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan Region. Lithos, 65, 1-67.

Robertson, A. H. & Ustaömer, T. (2004). Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, Nw Turkey. Tectonophysics, 381, 175–209.

Okay, A. I., Tüysüz, O., Satır, M., Özkan-Altıner, S. & Altıner, D. et al. (2006). Cretaceous and Triassic subduction-accretion, HP/ LT metamorphism and continental growth in the Central Pontides, Turkey. Geological Society of America Bulletin, 118, 1247–1269.

Okay, A. I., Gürsel, S., Sherlock, S., Altıner, D. & Tüysüz, O. et al. (2013). Early Cretaceous sedimentation and orogeny on the active margin of Eurasia: Southern Central Pontides, Turkey. Tectonics, 32, 1247–1271.

Aygül, M., Okay, A. I., Oberhansli, R., Schmidt, A. & Sudo, M. (2015). Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: petrogenetic and tectonic implications. Asian Journal of Earth Science. https://doi.org/10.1016/j.jseaes.2015.07.005.

Aygül, M., Okay, A. I., Oberhänsli, R. & Sudo, M. (2016). Pre-collisional accretionary growth of the southern Laurasian active margin, Central Pontides, Turkey. Tectonophysics, 671, 218–234.

Çelik, Ö. F., Chiaradia, M., Marzoli, A., Özkan, M. & Billor, Z. et al. (2016). Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey). Tectonophysics, 672–673, 34–49.

Yalçın, C., Hanilçi., N., Kumral, M. & Kaya, M. (2018), Geochemistry of Kömürlükdere and Göçükdibi (Kargı-Çorum) Cu-Zn Mineralization, VIII. Geochemistry Symposium, Abstract books, p. 138-139, 02-06 May, Manavgat, Antalya, Turkey.

Nadoll, P., Mauk, J. L., Hayes, T. S., Koenig, A. E. & Box, S. E. (2012). Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ. Geol. 107, 1275–1292.

Nadoll, P., Mauk, J. L., Leveille, R. A. & Koenig, A. E. (2015). Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner. Depos. 50, 493–515.

Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E. C., McClenaghan, M. B., Duchesne, C. & Boutroy, E. (2016). Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geol. Rev. 78, 388–408. https://doi.org/ 10.1016/j.oregeorev.2016.04.014.

Beaudoin, G. & Dupuis, C. (2009). Iron-oxide trace element fingerprinting of mineral deposit types. In: Mumin, H., Corriveau, L. (Eds.), Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues, Short Course, Geological Association of Canada Annual Meeting, Québec City, 107–121.

Yalçın, C., Hanilçi, N., Kumral, M., & Kaya, M. (2022). Magnetite geochemistry of Beshhi-type Cu-Zn mineralizations in Central Pontides (Kargı-Çorum). Advanced Engineering Days (AED), 2, 30-32.