Provenance, petrographic and geochemical signatures of sandstones in Çalarasın Formation: A unit of ophiolitic melange in eastern of Kargı District

Main Article Content

Cihan Yalçın
Nurullah Hanilçi
Mustafa Kumral
Mustafa Kaya

Abstract

Tectonic slices of different origins are observed in the eastern of Kargı (Çorum) district. These slices' metamorphic units and lithologies of ophiolitic melange are observed with tectonic contact. The Çalarasın formation is observed at the upper levels of the ophiolitic mélange, which extends to the east of Kargı (Çorum) in the Central Pontides. The formation is composed of thin-bedded siltstone intercalated sandstone-shale and mudstone alternations. The sandstones of the formation include quartz, plagioclase, calcite, biotite, chlorite, and volcanic rock particles. The sandstones were analyzed for geochemical properties and provenance traces, respectively. According to these analyzes, SiO2 % is found between 26.46-71.78%, Al2O3% 5.22-10.86, Fe2O3% 2.89-7.11 and CaO% 6.13-36.02 respectively. When trace elements are evaluated, Sc content ranges from 76.13-201.03 ppm, and Y content ranges from 9.54-55.11 ppm. Sandstones are rich in large ion lithophile elements (LIL; Ba, Th, U) and poor in high-field strength elements (HFS; Nb, Ti, Zr). Positive anomalies in terms of Pb and Y and negative ones in terms of Eu and P are observed in rocks. The sandstones are poor in terms of REE. The amount of HREE is substantially richer than the amount of LREE. Sandstones were normalized according to PAAS, and a distribution inversely proportional to the primitive values emerged. Ce/Ce* anomaly displays that the same oxygen environment has existed in the environment for a long time, but this situation has changed in the transition zone. Major oxide values suggest that the environment is arid and semi-arid media. It was determined that the sandstones were fed from the intermediate and mafic magmatic sources and tectonically represented the active continental margin and the island arc area.

Article Details

How to Cite
Yalçın , C. ., Hanilçi , N. ., Kumral , M. ., & Kaya , M. . (2022). Provenance, petrographic and geochemical signatures of sandstones in Çalarasın Formation: A unit of ophiolitic melange in eastern of Kargı District. Engineering Applications, 1(2), 145–156. Retrieved from https://publish.mersin.edu.tr/index.php/enap/article/view/746
Section
Articles

References

Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611-627.

Bhatia, M. R., & Crook, K. A. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology, 92(2), 181-193.

Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology, 67(1-2), 119-139.

Mclennan, S. M. (2018). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Geochemistry and mineralogy of rare earth elements (pp. 169-200).

Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177(1-2), 115-129.

Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of sedimentary Research, 74(2), 285-297.

Condie, K. C., Boryta, M. D., Liu, J., & Qian, X. (1992). The origin of khondalites: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China craton. Precambrian Research, 59(3-4), 207-223.

Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution: an examination of the geological record preserved in sedimentary rocks. Oxford, U.K., Blackwell, 328 pages.

Wronkiewicz, D. J. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53(7), 1537-1549.

Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51(9), 2401-2416.

Wronkiewicz, D. J., & Condie, K. C. (1990). Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta, 54(2), 343-354.

Tijani, M. N., Nton, M. E., & Kitagawa, R. (2010). Textural and geochemical characteristics of the Ajali Sandstone, Anambra Basin, SE Nigeria: implication for its provenance. Comptes Rendus Geoscience, 342(2), 136-150.

Ronov, A. B., Balashov, Y. A., Girin, Y. P., Bratishko, R. K., & Kazakov, G. A. (1974). Regularities of rare‐earth element distribution in the sedimentary shell and in the crust of the earth. Sedimentology, 21(2), 171-193.

Ketin, İ. (1966). Tectonic units of Anatolia (Asia minor). Bulletin of the Mineral Research and Exploration, 66(66), 24-34.

Okay, A. I., Celal Sengor, A. M., & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22(3), 267-270.

Yılmaz, Y., Tüysüz, O., Yigitbas, E., Genç, S.C. & Şengör, A.M.C., (1997). Geology and tectonic evolution of the Pontides, in Robinson, A.G. (ed). Regional and Petroleum Geology of the Black Sea and Surrounding Region, vol. 68. Bullettin of American Association Petroleum Geology, pp. 183–226.

Akdoğan, R., Okay, A. I., Sunal, G., Tari, G., Meinhold, G., & Kylander-Clark, A. R. (2017). Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: Central Pontides, northern Turkey. Journal of Asian Earth Sciences, 134, 309-329. https://doi.org/10.1016/j.jseaes.2016.11.028.

Robertson, A. H. (2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2), 1-67.

Robertson, A. H., & Ustaömer, T. (2004). Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey. Tectonophysics, 381(1-4), 175-209.

Robertson, A. H., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Taşlı, K., & Inan, N. (2006). The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous–Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences, 27(1), 108-145.

Okay, A. I., Tüysüz, O., Satır, M., Ozkan-Altiner, S., Altiner, D., Sherlock, S., & Eren, R. H. (2006). Cretaceous and Triassic subduction-accretion, high-pressure–low-temperature metamorphism, and continental growth in the Central Pontides, Turkey. Geological Society of America Bulletin, 118(9-10), 1247-1269.

Okay, A. I., Sunal, G., Sherlock, S., Alt ner, D., Tüysüz, O., Kylander‐Clark, A. R., & Aygül, M. (2013). Early Cretaceous sedimentation and orogeny on the active margin of Eurasia: Southern Central Pontides, Turkey. Tectonics, 32(5), 1247-1271.

Okay, A. I., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5-8), 1051-1076.

Aygül, M., Okay, A. I., Oberhaensli, R., Schmidt, A., & Sudo, M. (2015). Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: petrogenetic and tectonic implications. Journal of Asian Earth Sciences, 111, 312-327. https://doi.org/10.1016/j.jseaes.2015.07.005.

Aygül, M., Okay, A. I., Oberhänsli, R., & Sudo, M. (2016). Pre-collisional accretionary growth of the southern Laurasian active margin, Central Pontides, Turkey. Tectonophysics, 671, 218-234.

Ustaömer, T., & Robertson, A. H. (1999). Geochemical evidence used to test alternative plate tectonic models for pre‐Upper Jurassic (Palaeotethyan) units in the Central Pontides, N Turkey. Geological Journal, 34(1‐2), 25-53.

Uğuz, M.F. & Sevin, M. (2009). 1/100.000 Ölçekli Türkiye Jeoloji Haritaları, No.115, Jeoloji Etütleri Daire Başkanlığı, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

Yalçın, C. (2018). Geology and formation of the Gökçedoğan (Kargi-Çorum) Cu ± Zn mineralization. PhD Thesis, İstanbul University, Institute of Graduate Studies in Science and Engineering, 301.

Yalçın, C., Hanilçi, N., Kumral, M., & Kaya, M. (2022). Formation and Tectonic Evolution of Structural Slices in Eastern Kargi Massif (Çorum, Turkey). Bulletin of the Mineral Research and Exploration. Doi: 10.19111/bulletinofmre.1067604.

Marroni, M., Frassi, C., Göncüoğlu, M. C., Di Vincenzo, G., Pandolfi, L., Rebay, G., ... & Ottria, G. (2014). Late Jurassic amphibolite-facies metamorphism in the Intra-Pontide Suture Zone (Turkey): an eastward extension of the Vardar Ocean from the Balkans into Anatolia?. Journal of the Geological Society, 171(5), 605-608.

Okay, A. I., Sunal, G., Sherlock, S., Alt ner, D., Tüysüz, O., Kylander‐Clark, A. R., & Aygül, M. (2013). Early Cretaceous sedimentation and orogeny on the active margin of Eurasia: Southern Central Pontides, Turkey. Tectonics, 32(5), 1247-1271.

Okay, A. I., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5-8), 1051-1076.

Aygül, M., Okay, A. I., Oberhänsli, R., & Sudo, M. (2016). Pre-collisional accretionary growth of the southern Laurasian active margin, Central Pontides, Turkey. Tectonophysics, 671, 218-234.

Günay, K., Dönmez, C., Oyan, V., Yıldırım, N., Çiftçi, E., Yıldız, H., & Özkümüş, S. (2018). Geology and geochemistry of sediment-hosted Hanönü massive sulfide deposit (Kastamonu–Turkey). Ore Geology Reviews, 101, 652-674.

Yılmaz, Y. & Tüysüz, O. (1984). Kastamonu-Boyabat-Vezirköprü-Tosya arasındaki bölgenin jeolojisi (Ilgaz-Kargı masiflerinin etüdü), Maden Tetkik ve Arama Raporu, Maden Tetkik ve Arama Yayınları, Ankara.

Folk, R. L. (1962). Spectral subdivision of limestone types in classification of carbonate rocks, W.E. ham. (ed), AAPG Bull., 1, 62-82.

Sun, S. S., & McDonough, W.F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications, 42, 313-345.

Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In Developments in geochemistry (Vol. 2, pp. 63-114). Elsevier.

Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296(5854), 214-219. https://doi.org/10.1038/296214a0.

Piper, D. Z. (1974). Rare earth elements in the sedimentary cycle: a summary. Chemical geology, 14(4), 285-304. https://doi.org/10.1016/0009-2541(74)90066-7.

German, C.R., & Elderfield, H. (1989). Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta, 53 (10), 2561-2571. https://doi.org/10.1016/0016- 7037(89)90128-2.

Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology, 67(1-2), 119-139.

Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3), 329-345.

Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical geology, 104(1-4), 1-37.

Cullers, R. L. (1995). The controls on the major-and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chemical Geology, 123(1-4), 107-131.

Cullers, R. L., & Podkovyrov, V. N. (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117(3-4), 157-183. http://dx.doi.org/10.1016/S0301-9268(02)00079-7.

Yalçın, C., Hanilçi, N., Kumral, M., & Kaya, M. (2022). Petrographic and geochemical characterization of sandstones in upper level of ophiolitic melange in Central Pontides. Advanced Engineering Days (AED), 4, 96-99.