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The observation and prediction of sea level are crucial for various reasons including the 
vertical datum determination, crustal movement forecasting, oceanographic modeling, 
and coastal infrastructure planning. In Turkey, a sea level monitoring system has been 
established by the General Directorate of Mapping and aims to measure sea level. Through 
the Turkish National Sea Level Monitoring System (TUDES), sea level is monitored using 
data collected at 20 tide gauge stations at 15-minute intervals. Time series analysis is 
considered a highly suitable modeling and forecasting method for data that is periodically 
measured. In this study, time series analysis models including ARIMA, SARIMA, and Holt-
Winter's methods were applied using data from the Amasra tide gauge station within the 
TUDES for the year 2019. Additionally, a prediction for January 2020 at the same station 
was performed. The results were compared with the measured tide gauge data to assess 
the performance of the models. Evaluation criteria included the Mean Absolute Percentage 
Error (MAPE) for the Holt-Winter's method and the corrected Akaike Information Criteria 
(AICc) for the ARIMA and SARIMA models. The SARIMA(3,0,0)(0,2,2) model with an AICc 
value of -1307.83, indicating a seasonality of 12, was observed to be the best-performing 
model. 
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1. Introduction

 
The main objectives of geodesy are to define the 

shape and size of the earth and to obtain data on the 
spatial information of points (Vanícek & Krakiwsky, 
2015). Due to the inherent impracticality of directly 
performing mathematical calculations for the Earth's 
shape, various reference surfaces are employed to 
acquire positional information. Reference surfaces 
define the parameters necessary for the mathematical 
representation of geometric and physical quantities 
(Drewes, 2009). Depending on the scope and purpose of 

the study, different reference surfaces such as the sphere, 
ellipsoid, and geoid can be selected (Jekeli, 2016). 

       The geoid is an assumed equipotential still water 
surface that extends beneath the continents (Sansò & 
Sideris, 2013). This equilibrium surface used for vertical 
referencing can be determined through the long-term 
measurements of the average sea level. Sea level 
measurements observed over many years are reduced to 
the mean absolute sea level by removing various factors, 
in conjunction with geodetic measurements. The 
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reduced sea level is defined as the vertical datum 
(Altamimi et al., 2010). Therefore, the significance and 
analysis requirement of sea level measurements emerge. 

The change of global  mean sea level, as estimated 
from satellite data over the past few decades, is 
approximately +3mm per year (Cazenave et al., 2014). 
Nonetheless, this rate exhibits geographical non-
uniformity and notable variations worldwide (Bindoff et 
al., 2007; Mitchum et al., 2010; Church et al., 2013). 

Additionally, with the melting of land ice, the global 
mean sea level has risen by approximately 20 cm since 
the 1880s (Lindsey, 2022). This pronounced change in 
sea level not only plays a crucial role in determining 
vertical datum but is also of critical significance for 
regions around coastlines, particularly coastal areas. The 
future planning of coastal regions and the monitoring of 
environmental changes induced by global climate 
change, with appropriate actions taken accordingly, 
necessitate the continuous observation of sea levels.  

Recent studies suggest that by the year 2100, sea 
levels could rise by 1 meter or more. This scenario poses 
a significant threat to coastal areas and ecosystems 
(Neumann et al., 2015). 

Moreover, in the study utilizing sea level data 
observed between 2000 and 2018 and conducted by 
National Oceanic and Atmospheric Administration 
(NOAA), different scenarios were created based on 
future rates of greenhouse gas emissions, global 
warming, and variations in plausible rates of glacier and 
ice sheet loss. According to the 2022 report, even in the 
lowest greenhouse gas emission trajectory, it has been 
indicated that global mean sea levels are expected to rise 
by at least 0.3 meters by the year 2100. In a high-
emission scenario triggering rapid ice sheet collapse, it 
has been highlighted that sea levels could rise up to 2 
meters (Figure 1). 

 

 
 
 

Figure 1. Possible pathways for future sea level rise. 
 
As can be understood from the studies, the 

importance of observing sea level and taking appropriate 
actions is quite clear. 

To obtain meaningful results from sea level changes, 
it is necessary to conduct long-term, intensive 
measurements. To this end, global collaboration is 
undertaken. The Intergovernmental Oceanographic 
Commission (IOC), a subsidiary of UNESCO, addresses 
this issue on a global scale and collaborates with 
organizations such as the World Meteorological 
Organization (WMO). The representation of Turkey 
within the IOC is carried out by the  Turkish Naval Forces 

Office of Navigation, Hydrography and Oceanography 
(Turkish Naval Forces Office of Navigation, Hydrography 
and Oceanography, n.d.). 

The need for the long-term monitoring of sea level 
changes with globally distributed tide gauge stations has 
led the IOC to establish the Global Sea Level Observing 
System (GLOSS) (Unesco, I., 1997). As of November 2023, 
the GLOSS system, comprising 290 tide gauge stations, 
covers a total of 90 countries (Global Sea Level Observing 
System, n.d.) (Figure 2). The coordinating institution for 
the system in Turkey is the General Directorate of 
Mapping (General Directorate of Mapping, n.d.). 

 

 
Figure 2. Distribution of GLOSS system data points on 
the World map (Global Sea Level Observing System, n.d.). 

 
The Permanent Service for Mean Sea Level (PSMSL), 

which provides data for most studies on the global sea 
level rise in the 20th century, is responsible for the 
collection, publication, analysis, and interpretation of sea 
level data. Established in 1933 with its headquarters in 
Liverpool, it operates under the umbrella of the National 
Oceanography Centre (NOC) (Permanent Service for 
Mean Sea Level, n.d.) (Figure 3). 

 

 
Figure 3. Distribution of PSMSL system data points on 
the World map (Permanent Service for Mean Sea Level, 
n.d.). 

 
The Global Ocean Observing System (GOOS), 

another ocean observation system, is jointly supported 
by the IOC, WMO, and the United Nations Environment 
Programme (UNEP) (Global Ocean Observing System, 
n.d.). Operating under the umbrella of GOOS, the 
European Global Ocean Observing System (EuroGOOS) 
conducts its activities on a European scale. Established in 
Brussels in 1994, EuroGOOS is supported by national 
government institutions, research organizations, and 
private companies, boasting 44 members from 18 
European countries (Figure 4) (European Global Ocean 
Observing System, n.d.). 
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EuroGOOS operates in five distinct regions: the 
Arctic (Arctic ROOS), the Baltic region (BOOS), the North 
West Shelf (NOOS), the Ireland-Biscay-Iberia region (IBI-
ROOS), and the Mediterranean (MONGOOS) (European 
Global Ocean Observing System, n.d.). 

 

 
Figure 4. Map of EuroGOOS system member countries 
and regions (European Global Ocean Observing System, 
n.d.). 

 
As mentioned above, the task of monitoring sea 

levels in Turkey is carried out by the General Directorate 
of Maps. Furthermore, under the umbrella of the General 
Directorate of Maps, the Turkey National Sea Level 
Monitoring System (TUDES) has been established for sea 
level observations (TUDES, n.d.) (Figure 5). 
 

 
Figure 5. Distribution of TUDES system data points 

 
If an organizational chart is prepared for institutions 

and organizations working towards the goal of sea level 
measurement worldwide, Figure 6 can be obtained: 

To extract reliable information from data sets 
requiring long-term observations such as sea level, 
statistical analysis is necessary. Time series analysis, a 
type of statistical analysis, is a powerful option for 
examining sea level data. Time series analyses allow for 
understanding the stochastic mechanisms of the 
measured data and gaining insights into future 
predictions based on past data (Cryer & Chan, 2008). 

       Several exemplary studies exist that support the 
analysis of sea level data through time series, as 
mentioned in the paragraph above. For instance: a study 
predicting the surface water level of the Caspian Sea, 
which achieved successful results with the ARIMA model 
(Vaziri, 1997); a study emphasizing the sensitivity of 

low-lying island countries and using Exponential 
Smoothing and ARIMA models to forecast the sea level 
based on satellite altimeter data of the Arabian Sea, 
where the ARIMA model yielded better results 
(Srivastava et al., 2016); an analysis of the average sea 
level of Manila South Harbor using SARIMA models 
(Fernandez, 2018); a study integrating SARIMA and Long 
Short-Term Memory (LSTM) models for predicting sea 
level changes in the South China Sea, with a particular 
success in short-term sea level variations with 
centimeter-level precision (Sun et al., 2020); the 
prediction of tidal levels in Cilacap Bay using Holt-
Winter's, ARIMA, and SARIMA methods (Wibowo et al., 
2020); and a study forecasting the sea level along the 
West Peninsular Malaysia coastline using ARIMA, 
Support Vector Regression (SVR), and LSTM neural 
network models (Balogun et al., 2021) can be cited as 
examples. 

       In this study, the time series analysis in sea level 
data for the year 2019 at the Amasra tide gauge station 
was examined using time series analysis methods, 
including ARIMA, SARIMA, and Holt-Winter’s, and 
forecasting were made for January 2020. The obtained 
forecast values were compared with the actual data, and 
the best model was observed to be SARIMA(3,0,0)(0,2,2) 
with an AICc value of -1307.83 and a seasonality of 12. 

 

 
Figure 6. The organizational chart of institutions and 
organizations conducting sea level measurements. 

        
2. Material and Methods 

 
2.1. Material 

 
       The task of monitoring sea level in Turkey is 

conducted under the umbrella of the General Directorate 
of Mapping through the Turkish National Sea Level 
Monitoring System (TUDES) system, there are 20 GNSS-
integrated radar sensor tide gauge stations distributed 
along the coasts of Turkey and the Turkish Republic of 
Northern Cyprus, adhering to GLOSS standards. These 
stations record measurements at 15-minute intervals, 
capturing not only sea level but also meteorological 
parameters affecting sea level changes, such as 
atmospheric pressure, wind speed, humidity, and 
temperature (TUDES, n.d.). 

       For the purposes of this study, TUDES data was 
provided by the General Directorate of Mapping, and the 
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sea level data for the Amasra tide gauge station was 
accessed through the website 
https://tudes.harita.gov.tr/. 

 

 
Figure 7. Study area. 

 
In the year 2019, a total of 34,921 observation units 

were obtained for the Amasra tide gauge station. To 
organize and finalize this data, the following code snippet 
was written using the Python programming language, 
which calculates daily averages for each day: 

 

 
Figure 8. Code snippet to calculate daily averages. 

 
The organized data was examined for general 

statistical information using the Minitab program, and 
tests for normality and outliers were conducted. 

 
2.2. Method  

 
       Time series analysis examines the statistical 

distributions of periodic data within a specific time 
interval and consists of Autoregressive (AR) and Moving 
Average (MA) models.  

       In AR models, the dependent variable is 
considered as a function of its past values. In the AR(p) 
model, the Yt value is represented as a linear function of 
the weighted sum of the series' past p values and error 
terms, as shown in the equation:  

 
Yt = µ + φ1 Yt-1 + φ2 Yt-2 +…+ φp Yt-p + �t 

 
       In this equation, Yt-1, Yt-2, .., Yt-p  represent past 

observed values, μ represents the mean, �t  represents 
the error term, and φ1, φ2, .., φp represent the coefficients 
of past observations. The goal in the model is to obtain 
the model order that makes the sum of squared errors 
zero and determine the unknown coefficients (Kara, 
2009). 

       In the MA method, the aim is to reduce the effects 
of momentary, erroneous, and outlier data on the overall 
data. There are various types of moving average (MA) 
methods, such as Simple, Cumulative, Weighted, and 

Exponential. The equation for the MA method is 
represented as: 

 
Yt = µ + �t + θ1 � t-1 + … + θq � t-q 

 
       Here, θ1, …, θq represent the coefficients of error 

terms,  μ represents the mean and �t, � t-1, …, � t-q 

represent the error terms. The right side of the equation 
is expressed in terms of a meaningful q number of errors. 
The error term in the equation has a mean of zero and a 
constant variance (Kara,2009).  

 
2.3.1. Autoregressive Integrated Moving Average 
(ARIMA) 

 
       Many natural processes demonstrate inertia and 

do not undergo rapid changes. This characteristic, in 
conjunction with the sampling frequency, often leads to a 
correlation between successive observations. This 
sequential dependence is termed autocorrelation. When 
autocorrelation is present in the data, numerous 
standard modeling approaches, assuming independent 
observations, may become deceptive or, in some cases, 
entirely ineffective. Therefore, it is essential to explore 
alternative methodologies that consider the serial 
dependence inherent in the data. This can be relatively 
easily accomplished by utilizing time series models like 
Autoregressive Integrated Moving Average (ARIMA) 
models (Bisgaard & Kulahci, 2011).  

       ARIMA is a method used for performing 
univariate time series analysis and forecasting, also 
known as Box-Jenkins models. It represents an 
integrated model that incorporates operations such as 
MA, AR and differencing. In the model expressed as 
ARIMA(p, d, q), p denotes the degree of the 
autoregressive (AR) model, d represents the differencing 
operation, and q indicates the degree of the MA model 
(Cryer, 1986).  

     The fundamental objective of the Box-Jenkins 
forecasting method is to identify a suitable formula in 
order to minimize the residuals and ensure their absence 
of any discernible pattern (Afrifa-Yamoah et al., 2016).  

     The creation of the model occurs in three stages: 
identification, parameter determination, and prediction. 
In the identification stage, the stationarity of the series is 
examined. If the series is non-stationary, necessary 
processes such as differencing, autocorrelation or partial 
autocorrelation calculations are performed to make it 
stationary. In the parameter determination stage, 
decisions are made on the values of p, d, and q, and the 
choice of the ARIMA model. "p" represents how many 
past values are included in the regression for the current 
value, "d" indicates how many times differencing has 
been applied based on past data, and "q" represents how 
many past values are considered in the moving average. 
During this stage, ACF and PACF graphs of the stationary 
or stationarized series are examined, and a suitable 
model is selected accordingly. In the prediction stage, the 
accuracy value is calculated by examining the 
relationship between real and predicted values. 
Generally, the performance of the model is assessed 
using the mean squared error method (Erden, 2020). 

https://tudes.harita.gov.tr/


Advanced Geomatics – 2024; 4(1); 37-47 
 

  41  
 

     The Box-Jenkins forecasting model is outlined in 
the diagram below (Afrifa-Yamoah et al., 2016) (Figure 
9): 

 

 
Figure 9. Box-Jenkins forecasting model diagram. 

 
 The ARIMA model is represented as shown below: 
 

yt = α0 + ∑ 𝛼𝛼𝑡𝑡(𝑦𝑦𝑡𝑡−1 − µ) +  𝜀𝜀𝑡𝑡
𝑝𝑝
𝑡𝑡=1  

 
       Here, α0 and 𝛼𝛼𝑡𝑡  represent autoregressive 

parameters to be estimated, and 𝜀𝜀𝑡𝑡 represents the 
random errors with zero mean and finite variances. 

 
2.3.2. Seasonal Autoregressive Integrated Moving 
Average (SARIMA) 

 
       For time series data that exhibit seasonality and 

are non-stationary, ARIMA models often do not yield 
satisfactory results. Therefore, SARIMA models, which 
account for seasonality, are employed. In SARIMA 
models, denoted as SARIMA(p, d, q)(P, D, Q)s, in addition 
to the parameters used in ARIMA (p, d, q), there are 
additional parameters P, D, and Q that represent the 
seasonal AR order, differencing operation, and seasonal 
MA order. Additionally, s represents the length of the 
season. These models take into consideration both the 
non-seasonal and seasonal components, offering a more 
comprehensive approach to time series modeling 
(Shumway & Stoffer, 2017). 

 
If the ARIMA(p, d, q) model is represented as follows 

(Farhan and Ghim, 2018): 
 
Yt = φ1 Yt-1 + φ2 Yt-2 +…+ φp Yt-p + �t + θ1 � t-1 + … + θq � 

t-q 

Yt-p : time series data at different lags 
𝜙𝜙 and θ : unknown parameter 
p : AR order 
d : differencing order 

q : MA order 
� : independently distributed term 
 
The model can be shown more abbreviated: 
 
𝜙𝜙(L) ∆𝑑𝑑  𝑦𝑦𝑡𝑡 = θ(L)�t  

 

L : backshift or lag operator 
 ∆𝑑𝑑  : difference (1-L)d  

𝜙𝜙 and θ : lag operator polynomials 
 
To include seasonal variation in the time series, the 

ARIMA model can be expanded in the following manner: 
 
Φ𝑃𝑃(L𝑠𝑠) 𝜙𝜙(L) ∆𝑆𝑆𝐷𝐷∆𝑑𝑑 𝑦𝑦𝑡𝑡 = Θ𝑄𝑄(LS)θ(L)�t 

 
∆𝑆𝑆𝐷𝐷 : seasonal difference (1-L)D 
Θ and Φ : lag operator polynomials 
 

2.3.3. Holt-Winter’s  
 
       Exponential smoothing techniques are among 

the most commonly employed forecasting methods in 
various data sets (Gardner, 2006). Their popularity 
stems from their straightforward model formulation and 
their effectiveness in forecasting. Specifically, Holt-
Winter's methods enable the handling of univariate time 
series that encompass both trend and seasonal factors 
(Bermúdez et al., 2010). 

       The Holt-Winters forecasting algorithm, 
developed by Charles Holt and Peter Winters, is 
employed to smooth time series data and utilize it for 
forecasting various aspects in the concerned data (Panda, 
2020; Makatjane & Moroke, 2016). Exponential 
smoothing is a technique for smoothing time series data, 
assigning exponentially decreasing weights and values to 
past data. There are three types of exponential 
smoothing. The first type is single exponential smoothing 
for univariate time series forecasting. This type is utilized 
when the time series data lack a systematic structure, 
showing no trends and seasonality (Djauhari et al., 2020). 
This type of exponential smoothing utilizes a single 
parameter α, ranging between 0 and 1, as a smoothing 
factor. A smaller α value indicates slower learning, 
requiring more past observations for estimation, while a 
larger value indicates faster learning, relying on more 
recent observations for estimation (Panda, 2020). 

       The next type is double exponential smoothing, 
where, in addition to α, another smoothing parameter β 
is introduced for the change in trend. Two types of 
trends, additive trend providing linear trend analysis and 
multiplicative trend providing exponential trend 
analysis, are considered. During multi-step forecasts in 
the long term, it was observed that the trend is not a 
feasible possibility. Therefore, dampening may be 
practical by reducing the trend size for future forecasts 
with a straight line (Djakaria and Saleh, 2021). 

       Finally, the third type of exponential smoothing 
is the triple exponential smoothing method, a technique 
used when a series exhibits seasonal variations, allowing 
for seasonality. The triple exponential smoothing 
method depends on three parameters: α, β, and γ, with 
values ranging between zero and one, namely 0 < α, β, γ 
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< 1 (Shokeralla et al., 2020). The Holt-Winters triple 
exponential smoothing, named after its founders Charles 
Holt and Peter Winters, is the newest exponential 
smoothing method useful for identifying patterns of 
changing levels, trends, and seasons over time using 
additive or multiplicative seasons (Djakaria & Saleh, 
2021).   

       The method involves a three-equation structure, 
accounting for level, trend, and seasonality. The seasonal 
equation can be formulated in two ways: multiplicative 
when trend and seasonality move together, and additive 
when they do not. (Hafid and Al-maamary, 2011). The 
model is represented as shown below: 

 
Level:  
 
Lt = α 𝑌𝑌𝑡𝑡

𝑆𝑆𝑡𝑡−𝑠𝑠
 + (1- α)(Lt-1 + mt-1 ) 

 
Trend:  
 
mt = β(Lt - Lt-1) + (1 - β)mt-1 

 

Seasonality: 
 
St(t) = γ𝑌𝑌𝑡𝑡

𝐿𝐿𝑡𝑡
  + (1 - γ) St-s(t) 

 
Forecast:  
 
Ft+τ = (Lt + mtq) St-s(t) 
 
       Here; α, β and γ are smoothing constants, t is the 

time period, Yt is the actual observed values, s is the 
length of seasonality, Lt is the level component, mt  is the 
trend component, St is the seasonal component and Ft+τ is 
the forecast for τ periods ahead. 

 
3. Application and Results 

 
For all modeling, the 2021 version of the Minitab 

program was employed. The model evaluation criterion 
is based on corrected Akaike Information Criteria (AICc). 
AICc is essentially Akaike Information Criteria (AIC) with 
an extra penalty term for the number of parameters. The 
smaller AIC is, the better the model fits the data (Minitab, 
2021). 

The AIC is an information-theoretic indicator rooted 
in Kullback-Leibler Divergence, primarily assessing the 
information loss incurred by a given model. 
Consequently, the AIC criterion operates on the premise 
that the less information a model forfeits, the higher its 
quality (Kasali & Adeyemi, 2022).  

On the other hand, the Bayesian Information 
Criterion (BIC) criteria are founded on Bayesian theory, 
with the goal of maximizing a model's posterior 

probability given the available data.The Bayesian 
Information Criterion serves as a pivotal tool in the realm 
of statistics for model selection from a finite set of 
options. It maintains a close relationship with the Akaike 
Information Criteria and is partly reliant on the 
likelihood function (Kasali & Adeyemi, 2022). 

 
Here are the AICc and BIC formulas (Minitab, 2021): 
AIC = 2[(ρ + 1) – Lc] 
 
Lc(yi μi Φ) = ∑ 𝑙𝑙𝑖𝑖𝑛𝑛

𝑖𝑖=1  
 
li = ln(f(yi,  μ𝚤𝚤� , Φ )) 
 
yi ln( μ𝚤𝚤�) + (mi - )ln(1 -  μ𝚤𝚤�)  
 
p: the regression degrees of freedom 
Lc: the log-likelihood of the current model 
yi: the number of events for the ith row 
mi: the number of trials for the ith row 
Φ: 1, for binomial models 

         μ𝚤𝚤�: the estimated mean response of the 𝑖𝑖th row 
 
AICc = -2ln (Likelihood) + 2p + 2𝑝𝑝(𝑝𝑝 +1)

𝑛𝑛 − 𝑝𝑝− 1
 

 
AICC is not calculated when 𝑛𝑛 −  𝑝𝑝 − 1 ≤ 0 
 
BIC = -2ln (Likelihood) + p ln(n) 
 
Initially, the ARIMA model that does not account for 

seasonality was tested. The optimal parameters for the 
model were calculated with the assistance of the 
program, resulting in ARIMA(2,0,2) (Figure 10). 

 

 
Figure 10. ARIMA(2,0,2) model. 

 
       Subsequently, in order to apply the SARIMA 

model that takes seasonality into account, all 
combinations of the following values were tested: “3, 4, 
12” for seasonality,  “0, 1, 2” for differencing, “0, 1, 2” for 
seasonal differencing (Figure 11a-11b-11c).  
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Figure 11a. SARIMA model combinations with seasonality 12. 

 

 
Figure 11b. SARIMA model combinations with seasonality 4. 
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Figure 11c. SARIMA model combinations with seasonality 3. 

 
According to the AICc criterion, the models that 

provided the best results were:  
 
SARIMA models with seasonality 3 of 

SARIMA(0,1,0)(1,2,3) and SARIMA(0,0,2)(3,2,0) (Figure 
12a): 

 

 
Figure 12a. SARIMA(0,1,0) (1,2,3) and SARIMA(0,0,2) 
(3,2,0) models. 

 
SARIMA models with seasonality 4 of 

SARIMA(0,1,0)(1,2,3)(Figure 12b): 
 
 

 
Figure 12b. SARIMA(0,1,0)(1,2,3) model. 

SARIMA models with seasonality 12 of 
SARIMA(3,0,0)(0,2,2) and SARIMA(1,2,2)(3,1,0) (Figure 
12c): 

 

 
Figure 12c. SARIMA(3,0,0)(0,2,2) and 
SARIMA(1,2,2)(3,1,0) models. 

 



Advanced Geomatics – 2024; 4(1); 37-47 
 

  45  
 

The model performance summaries of ARIMA and 
SARIMA models were made according to Mean Square 
Error (MSD), AICc and BIC values (Table 1): 

 
Table 1. Model Summaries. 
Model MSD AICc (-) BIC (-) 
ARIMA(2,0,2) 0.0007982 1553.29 1530.13 
SARIMA(0,1,0)(1,2,3)3 0.0010915 1389.50 1370.26 
SARIMA(0,0,2)(3,2,0)3 0.0010598 1407.44 1384.37 
SARIMA(0,1,0)(1,2,3)4 0.0009654 1420.31 1401.10 
SARIMA(3,0,0)(0,2,2)12 0.0010689 1307.83 1285.09 
SARIMA(1,2,2)(3,1,0)12 0.0010199 1365.45 1338.75 

 
Here what the abbreviations represent: 
 
MSD: Mean Square Deviation 
AICc: Corrected Akaike Information Criteria 
BIC: Bayesian Information Criterion  
 
Finally, the Holt-Winter’s method was applied to the 

data. Sequentially, combinations of α, β, and γ 
parameters ranging from “0.1 to 0.9” were tested for 
seasonality values of  “3, 4, and 12”. The best result was 
obtained with a seasonality of “4” and α, β, γ parameters 
set to “0.4”, which was adopted in the additive model 
(Figure 13). 

 

 
Figure 13. Holt-Winter’s model. 

 
The obtained outputs to evaluate the model are as 

follows: 
 

Table 1. Holt-Winter’s model accuracy measures. 
Measures MAPE MAD MSD 
Values 6.29203 0.03136 0.00161 

 
Here what the abbreviations represent: 
 
MSD: Mean Square Deviation 
MAD: Mean Absolute Deviation 
MAPE: Mean Absolute Percent Error 
 
MSD formula: 
 

∑  |𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� |2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
 

 
MAD formula: 

 
∑  |𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� |𝑛𝑛
𝑡𝑡=1

𝑛𝑛
 

 
MAPE formula: 
 

∑  |𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� | / 𝑦𝑦𝑡𝑡  
𝑛𝑛

 𝑥𝑥 100 (𝑦𝑦𝑡𝑡  ≠ 0) 
 
Notation: 
 
𝑦𝑦𝑡𝑡  : actual value at time t 
𝑦𝑦𝑡𝑡�  : fitted value 
𝑛𝑛 : number of observations 
 

4. Conclusion  
 
In the scope of this study, time series analysis 

models, including ARIMA, SARIMA, and Holt-Winter's 
methods, were applied using the 2019 data from the 
Amasra tide gauge station within the TUDES system. 
Furthermore, forecasting were made for the same station 
for the month of January 2020. The obtained results were 
compared with the measured tide gauge data, and the 
model's performance was assessed. Evaluation criteria 
included the MSD for the Holt-Winter's method and the 
AICc for the ARIMA and SARIMA models. The best model 
observed was the SARIMA(3,0,0)(0,2,2) model with an 
AICc value of “-1307.83”, indicating a seasonality of “12”. 
And finally, the MSD value of SARIMA(3,0,0)(0,2,2)12 
method was compared with the MSD value of the Holt 
Winter's method, revealing that the SARIMA model with 
the value of ” 0.0010689” outperformed the Holt-
Winter's method with the value of  “0.00161”. 

At the light of these explanation and applications it 
is said that the SARIMA(3,0,0)(0,2,2)12 model is more 
suitable for these sea level data. 
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