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1. Introduction

Abstract

The observation and prediction of sea level are crucial for various reasons including the
vertical datum determination, crustal movement forecasting, oceanographic modeling,
and coastal infrastructure planning. In Turkey, a sea level monitoring system has been
established by the General Directorate of Mapping and aims to measure sea level. Through
the Turkish National Sea Level Monitoring System (TUDES), sea level is monitored using
data collected at 20 tide gauge stations at 15-minute intervals. Time series analysis is
considered a highly suitable modeling and forecasting method for data that is periodically
measured. In this study, time series analysis models including ARIMA, SARIMA, and Holt-
Winter's methods were applied using data from the Amasra tide gauge station within the
TUDES for the year 2019. Additionally, a prediction for January 2020 at the same station
was performed. The results were compared with the measured tide gauge data to assess
the performance of the models. Evaluation criteria included the Mean Absolute Percentage
Error (MAPE) for the Holt-Winter's method and the corrected Akaike Information Criteria
(AICc) for the ARIMA and SARIMA models. The SARIMA(3,0,0)(0,2,2) model with an AICc
value of -1307.83, indicating a seasonality of 12, was observed to be the best-performing
model.

the study, different reference surfaces such as the sphere,

The main objectives of geodesy are to define the
shape and size of the earth and to obtain data on the
spatial information of points (Vanicek & Krakiwsky,
2015). Due to the inherent impracticality of directly
performing mathematical calculations for the Earth's
shape, various reference surfaces are employed to
acquire positional information. Reference surfaces
define the parameters necessary for the mathematical
representation of geometric and physical quantities
(Drewes, 2009). Depending on the scope and purpose of

ellipsoid, and geoid can be selected (Jekeli, 2016).

The geoid is an assumed equipotential still water
surface that extends beneath the continents (Sanso &
Sideris, 2013). This equilibrium surface used for vertical
referencing can be determined through the long-term
measurements of the average sea level. Sea level
measurements observed over many years are reduced to
the mean absolute sea level by removing various factors,
in conjunction with geodetic measurements. The
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reduced sea level is defined as the vertical datum
(Altamimi et al., 2010). Therefore, the significance and
analysis requirement of sea level measurements emerge.

The change of global mean sea level, as estimated
from satellite data over the past few decades, is
approximately +3mm per year (Cazenave et al., 2014).
Nonetheless, this rate exhibits geographical non-
uniformity and notable variations worldwide (Bindoff et
al,, 2007; Mitchum et al., 2010; Church et al,, 2013).

Additionally, with the melting of land ice, the global
mean sea level has risen by approximately 20 cm since
the 1880s (Lindsey, 2022). This pronounced change in
sea level not only plays a crucial role in determining
vertical datum but is also of critical significance for
regions around coastlines, particularly coastal areas. The
future planning of coastal regions and the monitoring of
environmental changes induced by global climate
change, with appropriate actions taken accordingly,
necessitate the continuous observation of sea levels.

Recent studies suggest that by the year 2100, sea
levels could rise by 1 meter or more. This scenario poses
a significant threat to coastal areas and ecosystems
(Neumann et al., 2015).

Moreover, in the study utilizing sea level data
observed between 2000 and 2018 and conducted by
National Oceanic and Atmospheric Administration
(NOAA), different scenarios were created based on
future rates of greenhouse gas emissions, global
warming, and variations in plausible rates of glacier and
ice sheet loss. According to the 2022 report, even in the
lowest greenhouse gas emission trajectory, it has been
indicated that global mean sea levels are expected to rise
by at least 0.3 meters by the year 2100. In a high-
emission scenario triggering rapid ice sheet collapse, it
has been highlighted that sea levels could rise up to 2
meters (Figure 1).
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Figure 1. Possible pathways for future sea level rise.

As can be understood from the studies, the
importance of observing sea level and taking appropriate
actions is quite clear.

To obtain meaningful results from sea level changes,
it is necessary to conduct long-term, intensive
measurements. To this end, global collaboration is
undertaken. The Intergovernmental Oceanographic
Commission (I0C), a subsidiary of UNESCO, addresses
this issue on a global scale and collaborates with
organizations such as the World Meteorological
Organization (WMO). The representation of Turkey
within the IOC is carried out by the Turkish Naval Forces
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Office of Navigation, Hydrography and Oceanography
(Turkish Naval Forces Office of Navigation, Hydrography
and Oceanography, n.d.).

The need for the long-term monitoring of sea level
changes with globally distributed tide gauge stations has
led the IOC to establish the Global Sea Level Observing
System (GLOSS) (Unesco, 1., 1997). As of November 2023,
the GLOSS system, comprising 290 tide gauge stations,
covers a total of 90 countries (Global Sea Level Observing
System, n.d.) (Figure 2). The coordinating institution for
the system in Turkey is the General Directorate of
Mapping (General Directorate of Mapping, n.d.).
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Figure 2. Distribution of GLOSS system data poin‘fs‘(;ri
the World map (Global Sea Level Observing System, n.d.).

The Permanent Service for Mean Sea Level (PSMSL),
which provides data for most studies on the global sea
level rise in the 20th century, is responsible for the
collection, publication, analysis, and interpretation of sea
level data. Established in 1933 with its headquarters in
Liverpool, it operates under the umbrella of the National
Oceanography Centre (NOC) (Permanent Service for
Mean Sea Level, n.d.) (Figure 3).
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Figure 3. Distribution of PSMSL system data points on
the World map (Permanent Service for Mean Sea Level,
n.d.).

The Global Ocean Observing System (GOOS),
another ocean observation system, is jointly supported
by the 10C, WMO, and the United Nations Environment
Programme (UNEP) (Global Ocean Observing System,
n.d.). Operating under the umbrella of GOOS, the
European Global Ocean Observing System (EuroGOOS)
conducts its activities on a European scale. Established in
Brussels in 1994, EuroGOOS is supported by national
government institutions, research organizations, and
private companies, boasting 44 members from 18
European countries (Figure 4) (European Global Ocean
Observing System, n.d.).
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EuroGOOS operates in five distinct regions: the
Arctic (Arctic ROOS), the Baltic region (BOOS), the North
West Shelf (NOOS), the Ireland-Biscay-Iberia region (IBI-
ROOS), and the Mediterranean (MONGOOS) (European
Global Ocean Observing System, n.d.).
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Figure 4. Map of EuroGOOS system member countries
and regions (European Global Ocean Observing System,
n.d.).

As mentioned above, the task of monitoring sea
levels in Turkey is carried out by the General Directorate
of Maps. Furthermore, under the umbrella of the General
Directorate of Maps, the Turkey National Sea Level
Monitoring System (TUDES) has been established for sea
level observations (TUDES, n.d.) (Figure 5).
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Figure 5. Distribution of TUDES system data points

If an organizational chart is prepared for institutions
and organizations working towards the goal of sea level
measurement worldwide, Figure 6 can be obtained:

To extract reliable information from data sets
requiring long-term observations such as sea level,
statistical analysis is necessary. Time series analysis, a
type of statistical analysis, is a powerful option for
examining sea level data. Time series analyses allow for
understanding the stochastic mechanisms of the
measured data and gaining insights into future
predictions based on past data (Cryer & Chan, 2008).

Several exemplary studies exist that support the
analysis of sea level data through time series, as
mentioned in the paragraph above. For instance: a study
predicting the surface water level of the Caspian Sea,
which achieved successful results with the ARIMA model
(Vaziri, 1997); a study emphasizing the sensitivity of
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low-lying island countries and using Exponential
Smoothing and ARIMA models to forecast the sea level
based on satellite altimeter data of the Arabian Sea,
where the ARIMA model yielded better results
(Srivastava et al,, 2016); an analysis of the average sea
level of Manila South Harbor using SARIMA models
(Fernandez, 2018); a study integrating SARIMA and Long
Short-Term Memory (LSTM) models for predicting sea
level changes in the South China Sea, with a particular
success in short-term sea level variations with
centimeter-level precision (Sun et al, 2020); the
prediction of tidal levels in Cilacap Bay using Holt-
Winter's, ARIMA, and SARIMA methods (Wibowo et al,,
2020); and a study forecasting the sea level along the
West Peninsular Malaysia coastline using ARIMA,
Support Vector Regression (SVR), and LSTM neural
network models (Balogun et al,, 2021) can be cited as
examples.

In this study, the time series analysis in sea level
data for the year 2019 at the Amasra tide gauge station
was examined using time series analysis methods,
including ARIMA, SARIMA, and Holt-Winter’s, and
forecasting were made for January 2020. The obtained
forecast values were compared with the actual data, and
the best model was observed to be SARIMA(3,0,0)(0,2,2)
with an AICc value of -1307.83 and a seasonality of 12.
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Figure 6. The organizational chart of institutions and
organizations conducting sea level measurements.

2. Material and Methods
2.1. Material

The task of monitoring sea level in Turkey is
conducted under the umbrella of the General Directorate
of Mapping through the Turkish National Sea Level
Monitoring System (TUDES) system, there are 20 GNSS-
integrated radar sensor tide gauge stations distributed
along the coasts of Turkey and the Turkish Republic of
Northern Cyprus, adhering to GLOSS standards. These
stations record measurements at 15-minute intervals,
capturing not only sea level but also meteorological
parameters affecting sea level changes, such as
atmospheric pressure, wind speed, humidity, and
temperature (TUDES, n.d.).

For the purposes of this study, TUDES data was
provided by the General Directorate of Mapping, and the
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sea level data for the Amasra tide gauge station was

accessed through the website
https://tudes.harita.gov.tr/.
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Figure 7. Study area.

In the year 2019, a total of 34,921 observation units
were obtained for the Amasra tide gauge station. To
organize and finalize this data, the following code snippet
was written using the Python programming language,
which calculates daily averages for each day:

3 01 92

Figure 8. Code snippet to calculate daily averages.

The organized data was examined for general
statistical information using the Minitab program, and
tests for normality and outliers were conducted.

2.2. Method

Time series analysis examines the statistical
distributions of periodic data within a specific time
interval and consists of Autoregressive (AR) and Moving
Average (MA) models.

In AR models, the dependent variable is
considered as a function of its past values. In the AR(p)
model, the Y: value is represented as a linear function of
the weighted sum of the series' past p values and error
terms, as shown in the equation:

Yezpu+ g1 Yei+ @o Yoo+t @p Yep+ e

In this equation, Ye1, Ytz ., Yep represent past
observed values, u represents the mean, @: represents
the error term, and ¢, ¢, .., ¢y represent the coefficients
of past observations. The goal in the model is to obtain
the model order that makes the sum of squared errors
zero and determine the unknown coefficients (Kara,
2009).

In the MA method, the aim is to reduce the effects
of momentary, erroneous, and outlier data on the overall
data. There are various types of moving average (MA)
methods, such as Simple, Cumulative, Weighted, and
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Exponential. The equation for the MA method is
represented as:

Yizpu+@e+ 0 Ber+..+ 60,8 ¢q

Here, 6, ..., G;represent the coefficients of error
terms, [ represents the mean and B B ¢, ..., B &g
represent the error terms. The right side of the equation
is expressed in terms of a meaningful q number of errors.
The error term in the equation has a mean of zero and a
constant variance (Kara,2009).

2.3.1. Autoregressive Integrated Moving Average
(ARIMA)

Many natural processes demonstrate inertia and
do not undergo rapid changes. This characteristic, in
conjunction with the sampling frequency, often leads to a
correlation between successive observations. This
sequential dependence is termed autocorrelation. When
autocorrelation is present in the data, numerous
standard modeling approaches, assuming independent
observations, may become deceptive or, in some cases,
entirely ineffective. Therefore, it is essential to explore
alternative methodologies that consider the serial
dependence inherent in the data. This can be relatively
easily accomplished by utilizing time series models like
Autoregressive Integrated Moving Average (ARIMA)
models (Bisgaard & Kulahci, 2011).

ARIMA is a method used for performing
univariate time series analysis and forecasting, also
known as Box-Jenkins models. It represents an
integrated model that incorporates operations such as
MA, AR and differencing. In the model expressed as
ARIMA(p, d, q), p denotes the degree of the
autoregressive (AR) model, d represents the differencing
operation, and q indicates the degree of the MA model
(Cryer, 1986).

The fundamental objective of the Box-Jenkins
forecasting method is to identify a suitable formula in
order to minimize the residuals and ensure their absence
of any discernible pattern (Afrifa-Yamoah et al., 2016).

The creation of the model occurs in three stages:
identification, parameter determination, and prediction.
In the identification stage, the stationarity of the series is
examined. If the series is non-stationary, necessary
processes such as differencing, autocorrelation or partial
autocorrelation calculations are performed to make it
stationary. In the parameter determination stage,
decisions are made on the values of p, d, and g, and the
choice of the ARIMA model. "p" represents how many
past values are included in the regression for the current
value, "d" indicates how many times differencing has
been applied based on past data, and "q" represents how
many past values are considered in the moving average.
During this stage, ACF and PACF graphs of the stationary
or stationarized series are examined, and a suitable
model is selected accordingly. In the prediction stage, the
accuracy value is calculated by examining the
relationship between real and predicted values.
Generally, the performance of the model is assessed
using the mean squared error method (Erden, 2020).
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The Box-Jenkins forecasting model is outlined in
the diagram below (Afrifa-Yamoah et al., 2016) (Figure
9):

Plot series.
)
Is variance stable?
4 N
No. Yes.
v

Apply transformation,
go to plot series.

Obtain autocorrelation
function and partial
autocorrelation function.

Is mean stationary?
4 M
No. Yes.

v 3
Apply regular and

) Choose model.
seasonal differencing.

)
Estimate parameter
values.

Are residuals
uncorrelated?

M
No. Yes.
) v

Modify model, go to Are parameters significant
model selection. and uncorrelated?

4 N
No. Yes.
v

v
Modify model, go to Forecast.

model selection.

Figure 9. Box-Jenkins forecasting model diagram.

The ARIMA model is represented as shown below:

yr=ao+ Z?:l (Ve — W+ &

Here, a0 and a; represent autoregressive
parameters to be estimated, and &; represents the
random errors with zero mean and finite variances.

2.3.2. Seasonal Autoregressive Integrated Moving
Average (SARIMA)

For time series data that exhibit seasonality and
are non-stationary, ARIMA models often do not yield
satisfactory results. Therefore, SARIMA models, which
account for seasonality, are employed. In SARIMA
models, denoted as SARIMA(p, d, q)(P, D, Q)s, in addition
to the parameters used in ARIMA (p, d, q), there are
additional parameters P, D, and Q that represent the
seasonal AR order, differencing operation, and seasonal
MA order. Additionally, s represents the length of the
season. These models take into consideration both the
non-seasonal and seasonal components, offering a more
comprehensive approach to time series modeling
(Shumway & Stoffer, 2017).

If the ARIMA(p, d, q) model is represented as follows
(Farhan and Ghim, 2018):

Y=g Yei+ Go Yeot.t Gp Yep+ Be+ OB 1+ ...+ G
tq

Yep: time series data at different lags

¢ and 6 : unknown parameter

p : AR order

d : differencing order

41

q : MA order
: independently distributed term

The model can be shown more abbreviated:
(L) A? ye= 6(L) @,

L : backshift or lag operator
A% : difference (1-L)d
¢ and 6 : lag operator polynomials

To include seasonal variation in the time series, the
ARIMA model can be expanded in the following manner:

®p(L%) p(L) AZA? y: = Og(LS)O(L)E:

AP : seasonal difference (1-L)P
0 and @ : lag operator polynomials

2.3.3. Holt-Winter’s

Exponential smoothing techniques are among
the most commonly employed forecasting methods in
various data sets (Gardner, 2006). Their popularity
stems from their straightforward model formulation and
their effectiveness in forecasting. Specifically, Holt-
Winter's methods enable the handling of univariate time
series that encompass both trend and seasonal factors
(Bermudez et al., 2010).

The Holt-Winters forecasting algorithm,
developed by Charles Holt and Peter Winters, is
employed to smooth time series data and utilize it for
forecasting various aspects in the concerned data (Panda,
2020; Makatjane & Moroke, 2016). Exponential
smoothing is a technique for smoothing time series data,
assigning exponentially decreasing weights and values to
past data. There are three types of exponential
smoothing. The first type is single exponential smoothing
for univariate time series forecasting. This type is utilized
when the time series data lack a systematic structure,
showing no trends and seasonality (Djauhari et al., 2020).
This type of exponential smoothing utilizes a single
parameter a, ranging between 0 and 1, as a smoothing
factor. A smaller a value indicates slower learning,
requiring more past observations for estimation, while a
larger value indicates faster learning, relying on more
recent observations for estimation (Panda, 2020).

The next type is double exponential smoothing,
where, in addition to «, another smoothing parameter 8
is introduced for the change in trend. Two types of
trends, additive trend providing linear trend analysis and
multiplicative trend providing exponential trend
analysis, are considered. During multi-step forecasts in
the long term, it was observed that the trend is not a
feasible possibility. Therefore, dampening may be
practical by reducing the trend size for future forecasts
with a straight line (Djakaria and Saleh, 2021).

Finally, the third type of exponential smoothing
is the triple exponential smoothing method, a technique
used when a series exhibits seasonal variations, allowing
for seasonality. The triple exponential smoothing
method depends on three parameters: «, 8, and y, with
values ranging between zero and one, namely 0 < o, 3, v
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< 1 (Shokeralla et al., 2020). The Holt-Winters triple
exponential smoothing, named after its founders Charles
Holt and Peter Winters, is the newest exponential
smoothing method useful for identifying patterns of
changing levels, trends, and seasons over time using
additive or multiplicative seasons (Djakaria & Saleh,
2021).

The method involves a three-equation structure,
accounting for level, trend, and seasonality. The seasonal
equation can be formulated in two ways: multiplicative
when trend and seasonality move together, and additive
when they do not. (Hafid and Al-maamary, 2011). The
model is represented as shown below:

Level:
Le= (XSL + (1- (X)(Lt-l + mt-l)
t—s

Trend:

m¢ = B(Lt- Le1) + (1 - B)met
Seasonality:

Si(0) =y, + (1-7) Ses(t)
Forecast:

Fer= (Lt + meq) Ses(t)

Here; a, B and y are smoothing constants, t is the
time period, Y: is the actual observed values, s is the
length of seasonality, Lt is the level component, m is the
trend component, St is the seasonal component and Fx is
the forecast for t periods ahead.

3. Application and Results

For all modeling, the 2021 version of the Minitab
program was employed. The model evaluation criterion
is based on corrected Akaike Information Criteria (AICc).
AlCc is essentially Akaike Information Criteria (AIC) with
an extra penalty term for the number of parameters. The
smaller AIC is, the better the model fits the data (Minitab,
2021).

The AIC is an information-theoretic indicator rooted
in Kullback-Leibler Divergence, primarily assessing the
information loss incurred by a given model.
Consequently, the AIC criterion operates on the premise
that the less information a model forfeits, the higher its
quality (Kasali & Adeyemi, 2022).

On the other hand, the Bayesian Information
Criterion (BIC) criteria are founded on Bayesian theory,
with the goal of maximizing a model's posterior
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probability given the available data.The Bayesian
Information Criterion serves as a pivotal tool in the realm
of statistics for model selection from a finite set of
options. It maintains a close relationship with the Akaike
Information Criteria and is partly reliant on the
likelihood function (Kasali & Adeyemi, 2022).

Here are the AICc and BIC formulas (Minitab, 2021):
AIC=2[(p+1)- L]

Leipi @) = XL, g
li=In(f(yi, T, @))
Yiln() + (mi-)In(1 - 1)

p: the regression degrees of freedom

Lc: the log-likelihood of the current model

yi: the number of events for the ith row

mi: the number of trials for the ith row

P: 1, for binomial models
T,: the estimated mean response of the ith row

AICc = -2In (Likelihood) + 2p + 222D

n-p—-1
AICCis not calculated whenn— p—1 <0
BIC = -2In (Likelihood) + p In(n)

Initially, the ARIMA model that does not account for
seasonality was tested. The optimal parameters for the
model were calculated with the assistance of the
program, resulting in ARIMA(2,0,2) (Figure 10).

ARIMA (2,0,2)

0.7
0.6
0.5
0.4
03
0.2

0.1
1 4 7 10 13 16 13 22 25 28 31

e (Original Data (Amasra'20) ARIMA (2,0,2)

Figure 10. ARIMA(2,0,2) model.

Subsequently, in order to apply the SARIMA
model that takes seasonality into account, all
combinations of the following values were tested: “3, 4,
12” for seasonality, “0, 1, 2” for differencing, “0, 1, 2” for
seasonal differencing (Figure 11a-11b-11c).
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Figure 11a. SARIMA model combinations with seasonality 12.

SARIMA

Seasonality

4

Difference

0

1

Seasonal Difference

0]

1]

2

0]

1]

2

0]

1]

0.468887
0.483204
0.475302
0.476880
0472184
0479914
0.499442
0.506444
0.513748
0.505677
0.507603
0.492698
0494215
0408545
0.499674
0.500733
0.501725
0.502656
0.503529
0.504347
0.505115
0.505834
0.306509
0.507142
0.507735
0.508291
0.508813
0.509302
0.509760
0.510191
0.510594

0.452040
0.455681
0.469337
0.454376
0.438723
0.443102
0.471470
0.466937
0.457964
0.454854
0.479218
0.465285
0.456186
0.454166
0.478620
0.464571
0.455457
0.453454
0477914
0.463866
0.454754
0.452753
0.477215
0.463169
0.454059
0.452059
0.476522
0.462477
0.453368
0.451369
0.475832

0.484054
0.468872
0.490775
0.452009
0.468464
0.466248
0.506780
0.480535
0.491689
0.479232
0.511150
0.478317
0.487911
0.475379
0.509446
0.477220
0.488371
0.475843
0.510640
0.477371
0.488856
0.475734
0511182
0.477029
0.489102
0.475587
0.511787
0.476790
0.489428
0.475484
0.512404

047108
0.48322
0.48423
048547
0.47992
0.48747
0.50017
0.50819
0.51035
0.50402
0.50455
0.49502
0.49699
049722
049580
0.49459
049375
040540
049675
0.49879
0.40876
0.40805
0.49833
049745
0.49777
049756
0.49724
0.49681
0.49672
0.49699
0.49709

0.468362
0.483028
0.490503
0.480254
0.464287

0.471272
0.487817
0.492158
0.4830923
0.481546
0.493664
0.487121
0.481583
0.481823
0.494032
0.487440
0.481373
0.481667
0.495017
0.487592
0.481460
0.481710
0.495063
0487656
0.481529
0.481774
0.495125
0.487717
0.481591
0.481837
0.495187

0456437
0.442939
0471341
0.442696
0.434901

0426239
0.464818
0.443222
0.438403
0.424877
0456747
0.427899
0420750
0410241
0.449304
0.424078
0.419926
0.405888
0.440698
0411201
0.404527
0.392423
0.432404
0405715
0.400480
0.385814
0423206
0.392757
0.386441
0.372913
0414106

0.464689
0.469755
0.481632
0.474204
0.477904

0.436706
0.412461
0.403113
0.363764

0.472360
0.475465
0.471535
0.473191
0.470327
0.471236
0.469041
0.469381
0.467630
0.467601
0.466158
0.465877
0.464641
0.464190
0.463094
0.462528
0.461526
0.460882
0.4590945
0.459248
0.458354
0.457622
0.456756
0.456001
0.455155
0.454383

0.334055
0.308523
0.295004
0.260069
0.228307
0.201496
0.186125
0.152235
0.119433
0.091589
0.075117
0.041122
0.007539
-0.021171
-0.038496
-0.072993
-0.107299
-0.136791
-0.154882
-0.19002
-0.22504
-0.255276
-0.274103
-0.309931
-0.3456865
-0.376629
-0.39618

042262

0.32769

0.28532

0.15712

0.07115

-0.07196
-0.16054
-0.33780
-0.47142
-0.66384
-0.80043
-1.02813
-1.210685
-1.45378
-1.63978
-1.91929
-2,15208
-2.44730
-2.68409
-3.01679
-3.30122
-3.64990
-3.93885
-4.32612
-4.66357
-5.06708
-5.40058
-5.85279
-6.24463
-6.70436
-7.10177

Figure 11b. SARIMA model combinations with seasonality 4.
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Figure 11c. SARIMA model combinations with seasonality 3.

According to the AICc criterion, the models that SARIMA
provided the best results were: 07

SARIMA models with seasonality 3 of
SARIMA(0,1,0)(1,2,3) and SARIMA(0,0,2)(3,2,0) (Figure

12a): o
SARIMA .
07 01

SARIMA(0,1,0)(1,2,3) ~ ——0Original Data (Amasra'20}

Figure 12b. SARIMA(0,1,0)(1,2,3) model.

05 SARIMA models with seasonality 12 of
» SARIMA(3,0,0)(0,2,2) and SARIMA(1,2,2)(3,1,0) (Figure
' 12¢):
03
SARIMA

02 07
01 06

1 4 7 10 13 16 18 22 25 28 31

s SARIMA(0,1,0)(1,2,3)  =====SARIMA(0,0,2)(3,2,0)  ssmmmOriginal Data (Amasra'20)

Figure 12a. SARIMA(0,1,0) (1,2,3) and SARIMA(0,0,2) .
(3,2,0) models. 02
SARIMA models with seasonality 4 of T e e wwm s omom
SARIMA(O,l’O)(1,2’3)(F1gure 12b): ———SARIMA(3,0,0)(0,2,2)  ====SARIMA(L,2,2)(3,1,0) =mmmm=Original Data (Amasra'20)
Figure 12c. SARIMA(3,0,0)(0,2,2) and

SARIMA(1,2,2)(3,1,0) models.
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The model performance summaries of ARIMA and
SARIMA models were made according to Mean Square
Error (MSD), AlCc and BIC values (Table 1):

Table 1. Model Summaries.

Model MSD

ARIMA(2,0,2) 0.0007982
SARIMA(0,1,0)(1,2,3)3s 0.0010915
SARIMA(0,0,2)(3,2,0)3 0.0010598
SARIMA(0,1,0)(1,2,3)+ 0.0009654
SARIMA(3,0,0)(0,2,2)12 0.0010689
SARIMA(1,2,2)(3,1,0)12 0.0010199

AICc () BIC ()

1553.29 1530.13
1389.50 1370.26
1407.44 1384.37
1420.31 1401.10
1307.83 1285.09
1365.45 1338.75

Here what the abbreviations represent:

MSD: Mean Square Deviation
AlCc: Corrected Akaike Information Criteria
BIC: Bayesian Information Criterion

Finally, the Holt-Winter’s method was applied to the
data. Sequentially, combinations of «, f, and Yy
parameters ranging from “0.1 to 0.9” were tested for
seasonality values of “3, 4, and 12”. The best result was
obtained with a seasonality of “4” and «, 8, y parameters
set to “0.4”, which was adopted in the additive model
(Figure 13).

Holt-Winter's
07
0.6
0.5
04
0.3
0.2

01

1 4 7 10 13 16 19 22 25 28

e Original Data {Amasra'20) = Holt-Winter's

Figure 13. Holt-Winter’s model.

The obtained outputs to evaluate the model are as
follows:

Table 1. Holt-Winter’s model accuracy measures.
Measures MAPE MAD MSD

6.29203 0.03136 0.00161

Values

Here what the abbreviations represent:

MSD: Mean Square Deviation
MAD: Mean Absolute Deviation
MAPE: Mean Absolute Percent Error

MSD formula:

Xt=1 lye — 3/]\t|2
n

MAD formula:

31

45

Yt=1 [yt — Vel
n

MAPE formula:

DRVA _nytl / Ve x100 (y, # 0)

Notation:

y; : actual value at time t
y; : fitted value
n : number of observations

4. Conclusion

In the scope of this study, time series analysis
models, including ARIMA, SARIMA, and Holt-Winter's
methods, were applied using the 2019 data from the
Amasra tide gauge station within the TUDES system.
Furthermore, forecasting were made for the same station
for the month of January 2020. The obtained results were
compared with the measured tide gauge data, and the
model's performance was assessed. Evaluation criteria
included the MSD for the Holt-Winter's method and the
AlCc for the ARIMA and SARIMA models. The best model
observed was the SARIMA(3,0,0)(0,2,2) model with an
AlCc value of “-1307.83”, indicating a seasonality of “12”.
And finally, the MSD value of SARIMA(3,0,0)(0,2,2)12
method was compared with the MSD value of the Holt
Winter's method, revealing that the SARIMA model with
the value of ” 0.0010689” outperformed the Holt-
Winter's method with the value of “0.00161".

At the light of these explanation and applications it
is said that the SARIMA(3,0,0)(0,2,2)12 model is more
suitable for these sea level data.
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