
Advanced Geomatics
Research Article 2022: 2(1); 01-06

*Corresponding Author Cite this;

 (muammerozkan@hacettepe.edu.tr) ORCID ID 0000-0002-7935-5992
 (aycatabakoglu@hacettepe.edu.tr) ORCID ID 0000-0003-2317-8357
 (eguygun@hacettepe.edu.tr) ORCID ID 0000-0001-8494-2545
*(banbar@hacettepe.edu.tr) ORCID ID 0000-0003-2331-6190

Research Article

Özkan, M., Tabakoğlu, A., Uygun, E. G. & Anbaroğlu, Berk (2022). A
Computationally Reproducible Approach to Dijkstra’s Shortest Path Algorithm.

Advanced Geomatics, 2(1), 01-06.

Accepted: 27/03/2022

Advanced Geomatics

http://publish.mersin.edu.tr/index.php/geomatics/index

e-ISSN: 2791-8637

A Computationally Reproducible Approach to Dijkstra’s Shortest Path Algorithm

Muammer Özkan1 , Ayça Tabakoğlu1 , Ekin Gönenç Uygun1 Berk Anbaroğlu*1

1 Hacettepe University, Geomatics Engineering, Ankara, Turkey

Keywords ABSTRACT

Shortest path,
Routing Algorithms,
Dijkstra’s Algorithm,
NetworkX.

 One of the common problems in spatial analysis is the Shortest Path Problem (SPP), which
aims to determine the shortest path between any given two points on a network structure.
Although Shortest Path Problem is a widely used in spatial analysis, there has been lack of
online resources to ease learning of the method with a computationally reproducible
approach. This article presents how Dijkstra's algorithm works when finding the shortest
path. Specifically, the developed online tutorial relied on the openly available road network
data of San Francisco, NetworkX a Python package to realize complex graph analysis, and
finally QGIS to visualize the shortest paths. All of the discussed material is presented as a
Jupyter Notebook to ease computational reproducibility.

1. INTRODUCTION

A graph (network) data structure is commonly used
in a Geographical Information System software for
various purposes ranging from navigation (Zeng &
Church, 2009) to social network analysis (Kumar, Kumar,
& Soni, 2021). A graph is composed of nodes and edges,
where an edge links two nodes. One of the purposes that
utilize graph data structures in geomatics applications is
the identification of the least-cost tree connecting all
nodes of a graph (i.e. identification of the minimum
spanning tree). Such an approach could be used to
optimize the structure of an, for example, electricity-
distribution network (Çalışkan & Anbaroğlu, 2020) and
path planning. Finding the shortest path between two
nodes of a graph is widely used not only in our daily lives
but also for designing efficient public transportation
systems (Yu, Kong, Shao, & Yan, 2018).

The Shortest Path Problem (SPP) consists of
determining a path between a beginning (source)
location and an end (target) location, such that the
distance is minimum compared to alternatives (Rout,
Vemireddy, Raul, & Somayajulu, 2020). In general, SPP is
represented by a graph with several paths to be
evaluated, which represents a computational difficulty.

Thus, many types of research from computer science and
engineering areas focus on developing efficient
algorithms to solve the SPP (Huber & Rust, 2016).

The wide use of SPP in research and practice
necessitates the development of openly available
solutions that eases learning and experimentation.
Amongst the other scripting/programming languages,
Python programming language is prominent due to its
natural integration to QGIS, a commonly used open-
source GIS software. Furthermore, the availability of
Jupyter Notebook, which is a computational notebook
where a researcher can integrate both code and
explanatory text. Utilizing computational notebooks
have recently been used in data science and teaching GIS
related courses (Kim & Henke, 2021).

This research aims to develop a computationally
reproducible approach to Dijkstra’s algorithm, one of the
first algorithms to solve the SPP, by employing one of the
renowned Python packages, NetworkX, on an openly
available dataset. The developed Jupyter Notebook, and
data are shared on GitHub to ease computational
reproducibility (GitHub - Banbar/Shortest_path_Dijkstra,
n.d.).

http://publish.mersin.edu.tr/index.php/geomatics/index
https://orcid.org/0000-0002-7935-5992
https://orcid.org/0000-0003-2317-8357
https://orcid.org/0000-0001-8494-2545
https://orcid.org/0000-0003-2331-6190

Advanced Geomatics – 2022; 2(1); 01-06

 2

2. METHOD

This section first describes the Dijkstra’s algorithm and
then the NetworkX package.

2.1. Dijkstra’s Algorithm

Dijkstra's algorithm is an algorithm for finding the
shortest paths between nodes in a graph, which may
represent, for example, road networks. The algorithm is
it has O(nlogn) complexity. Also, this algorithm makes a
tree of the shortest path from the starting node, the
source, to all other nodes (points) in the graph.

Dijkstra’s algorithm assumes an infinite weight to
the nodes if it does not readily know their weights.
Specifically, when moving from node A to node E, as
illustrated in Figure 1, the algorithm initially assumes
that reaching node E would have an infinite cost. This is
because node E is not adjacent to node A. This is
represented in the first step of the algorithm illustrated
in Table 1.

(a)

(b)

Figure 1. A sample graph (a), the shortest path between
nodes A and E with a total cost of 10 (b)

We assume that the route starts at node A and
finishes at node E. The execution steps are illustrated in
Table 1 consisting of four steps. First step of Dijkstra’s
algorithm is to identify the weights of the neighbors of
the start point. The weights of the neighbors of node A
are illustrated in Table 1. After finding the adjacent
nodes, the algorithm moves to the node that has the least
cost. Specifically, in the second step the algorithm starts
searching the graph from node B. Since moving to node B
incurs of cost of two, it is also recorded. For example, the
cost of edge BD is six, and with the additional cost of two
to reaching node B, it has a weight of eight. As this is an
improvement, an update operation takes place in terms
of reaching node D, which used to be from node A with a
weight of nine. Once all the nodes are visited, the
algorithm terminates.

The resulting fourth step identifies all the shortest
paths from node A. It is straightforward to determine the
shortest path, from example to node E, by following the
previous nodes. Starting from the target, E, its previous
node is D, whose previous node is C, and whose previous
node is A (i.e. E  D  C  A). Consequently, the shortest
path from node A to node E is the reverse of the outcome,
which is A  C  D  E. The algorithm can be
generalized to directed graphs, where the cost of an edge
AB may differ from BA, by keeping an adjacency list of
nodes.

Table 1. Execution steps starting from node A
Step 1: Current Node A (total cost = 0)

To Weight Prev. Node
B 2 A
C 4 A
D 9 A
E ∞ -

Step 2: Current Node B (total cost = 2)
To Weight Prev. Node
B 2 A
C 4 A
D 8 B
E 12 B

Step 3: Current Node C (total cost = 4)
To Weight Prev. Node
B 2 A
C 4 A
D 7 C
E 12 B

Step 4: Current Node D (total cost = 7)
To Weight Prev. Node
B 2 A
C 4 A
D 7 C
E 10 D

The algorithm is simple and effective. In order to run
Dijkstra’s algorithm faster, identification of the next node
to visit can be realized by storing the weight values in a
minimum heap data structure. The min-heap property is
that when you take any two nodes of the tree (let's call
them X and Y) the value of node X is greater than or equal
to the value of node Y if X is a child of Y. In this way, if we
move from any node to the root of the tree, the value
should never increase. In this way, the weights of the
nodes are sorted in ascending order and a route is
created by checking the ones with less weight. An
exemplar minimum heap structure is provided in Figure
2.

In addition, a heap must be a complete binary tree,
which allows storing the values of a heap in a linear list
structure as shown in A thorough description of a min-
heap is provided (Necaise, 2011). It should be noted that
complex data structures such as radix heap, may increase
the computational performance of finding the SPP
(Ahuja, Mehlhorn, Orlin, & Tarjan, 1990).

Advanced Geomatics – 2022; 2(1); 01-06

 3

Figure 2. A min-heap (a) and its list representation (b). Inserting ten (c,d) and extraction from the heap (e, f, g)

2.2. NetworkX

NetworkX is a Python package for graph analysis. This
package helps to create, manipulate, and investigate the
structure, dynamics, and functions of complex networks.
It is used to study large complex networks represented
in form of graphs with nodes and edges. Using NetworkX,
one can load and store complex networks. The potential
audience for NetworkX includes mathematicians,
physicists, biologists, computer scientists, and social
scientists. As of 22 February 2022, 83 papers appear on
SCOPUS with the keyword “NetworkX”. It allows
computational reproducibility as the package is free
software, and can be redistributed and/or modified
under the terms of the BSD License. (“Overview —
NetworkX 1.10 Documentation,” n.d.).

3. RESULTS

This section first describes the openly available
dataset of San Francisco city. Second the execution steps
of the developed Jupyter Notebook are described. The
results described in this section are computationally
reproducible, which is considered to ease testing on
other datasets as well as experimenting on a similar
process.

3.1. San Francisco Road Network

This San Francisco Road network data set is
obtained from the ACM SIGSPATIAL GIS Cup 2015
competition(ACM SIGSPATIAL GIS Cup 2015, n.d.). The
reason for choosing this data set is that it is open data
source. This road network dataset contains routes and
nodes. Each row of the file sfo_roads.txt represents an
edge and edges are one-way edges. If an edge represents
a two-way street, edges are unsigned or with negative
sign. For example: 123456, -123456.

Table 2. Properties of the San Francisco Road Data set
Characteristic Result

Total Length of Roads 9743 (km)

Total Number of Nodes 42408

Total Number of Roads 96850

It should be noted that, there are islands in this
dataset. Specifically, some nodes do not have access to
other nodes because the start and end points of some
paths are written incorrectly. The Figure 3 is serves as a
good example of this.

Advanced Geomatics – 2022; 2(1); 01-06

 4

Figure 3. Islands in the data set (Example node id: 48526416)

3.2. Finding the Shortest Path

In order to find the shortest path with the NetworkX
package, the following Python packages need to be
installed. First, as the road network data is originally
recorded as a shapefile (.shp), it must be opened and
stored for processing in Python. For this purpose,
GeoPandas package is used. Second, in order to record
the execution time of the whole process, the time package
is used. Finally, to experiment on random start and end
locations, the random package is used.

In order to use the “shortest_path” function of
NetworkX, an array with three elements must be
designed: i) the start point, ii) end point, and iii) the
weight, which is the cost between the start and end nodes
(points). In this paper’s context, the weight value is the
distance between two points.

At this point, the shortest_path function can be
executed. If there are routes between these two points,
the algorithm will select the least cost path. On the other
hand, if there is not a route between the randomly
selected two points, it will return "No path between ‘Start
Point ID’ and ‘End Point ID’”. These steps are summarized
in Figure 4.

Figure 4. Methodology of using NetworkX shortest_path
function with a shapefile.

The developed Jupyter Notebook handled the
scenario where the start or end point is located in
another island, as illustrated in Figure 3. Specifically, the
developed function Random_Dijkstra_NetworkX() runs
as intended as shown in Figure 5.

Figure 5. An exemplar shortest path computation with an SQL output (a), failed execution (b)

Advanced Geomatics – 2022; 2(1); 01-06

 5

In Figure 5, a route exists between the randomly
generated start and end nodes. The function the function
returns then return the SQL code to select the nodes that
can be directly executed in QGIS for selection. On the
other hand, there might not be a route between the
randomly selected points, which is also handled as
shown in Figure 5b. Further explanation is also provided
to highlight which nodes are in different islands.

4. DISCUSSION

Although the details regarding a single randomly
generated could be obtained, a more comprehensive
experimental setup was required in order to have a
better understanding on the distribution of run -times.
Therefore, the last cell of the developed computational

notebook allows a performance analysis on a number of
random routes. Specifically, a user can specify the
number of random routes to be generated, and their run-
times are recorded.

A box-plot illustrates the variation of these run-
times and further explanation is provided to reveal
further insights to which paths resulted in the fastest /
slowest computation. An exemplar run led to the results
is illustrated in Figure 5.

Once a route has more nodes to visit, then its
computation time increases. The median run time to
determine a route is around 0.2 seconds on a computer
having Windows 10 with a i7 processor 2.60 GHz and 8
GB RAM.

Figure 5. Run time analysis of 30 random routes with additional explanation on fastest and slowest run times

Furthermore, the resulting paths having the

min/max run time is also stored as GeoJSON files under
the results/ folder. It is therefore straightforward to
visualize these paths on QGIS by dragging and dropping

the generated output files. A map produced with this
approach is illustrated in Figure 6.

Figure 6. The least and the most time-consuming routes visualized in QGIS.

Advanced Geomatics – 2022; 2(1); 01-06

 6

The ease of visualizing these paths allow a
researcher/student to visually verify the outcome.
Effective integration of the developed online material in
a GIS Programming course should be investigated to
further gain insights on its effectiveness (Anbaroğlu,
2021).

5. CONCLUSION

This paper developed an online education material
to enable a researcher or analyst to understand how
Dijkstra’s algorithm works. The experimental setup is
designed in a way to ease computational reproducibility.
Specifically, open data and open-source software was
relied on, and the developed code was implemented as a
Jupyter Notebook that is hosted on GitHub. The future
work will focus on the utilization of this educational
material on a classroom setting, where students would
be expected to find their own open dataset, and
implement the Dijkstra’s algorithm using a heap instead
of relying on the readily available functions of NetworkX.

Author contributions

Muammer Özkan developed the code and contributed to
the draft of the paper; Ayça Tabakoğlu and Ekin Gönenç
Uygun wrote the draft of the paper and contributed to
the code, and Berk Anbaroğlu did the supervision and
completed the paper.

Conflicts of interest

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

Research and publication ethics were complied with in
the study.

References

ACM SIGSPATIAL GIS Cup 2015. (n.d.). Retrieved from
https://research.csc.ncsu.edu/stac/GISCUP2015/ind
ex.php

Ahuja, R. K., Mehlhorn, K., Orlin, J. & Tarjan, R. E. (1990).
Faster algorithms for the shortest path problem.
Journal of the ACM, 37(2), 213–223.
https://doi.org/10.1145/77600.77615

Anbaroğlu, B. (2021). A collaborative GIS programming
course using GitHub Classroom. Transactions in GIS,

25(6), 3132–3158.
https://doi.org/10.1111/tgis.12810

Çalışkan, M. & Anbaroğlu, B. (2020). Geo-MST: A
geographical minimum spanning tree plugin for QGIS.
SoftwareX, 12, 100553.
https://doi.org/10.1016/j.softx.2020.100553

GitHub—Banbar/shortest_path_Dijkstra. (n.d.).
Retrieved from
https://github.com/banbar/shortest_path_Dijkstra

Huber, S. & Rust, C. (2016). Calculate Travel Time and
Distance with Openstreetmap Data Using the Open
Source Routing Machine (OSRM). The Stata Journal:
Promoting Communications on Statistics and Stata,
16(2), 416–423.
https://doi.org/10.1177/1536867X1601600209

Kim, B. & Henke, G. (2021). Easy-to-Use Cloud Computing
for Teaching Data Science. Journal of Statistics and
Data Science Education, 29(sup1), S103–S111.
https://doi.org/10.1080/10691898.2020.1860726

Kumar, R., Kumar, S. & Soni, A. (2021). Election
prediction using twitter and GIS. 2021 International
Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), 306–311.
https://doi.org/10.1109/ICACITE51222.2021.9404
671

Necaise, R. D. (2011). Data structures and algorithms
using Python. Hoboken, N.J: Wiley.

Overview—NetworkX 1.10 documentation. (n.d.).
Retrieved February 10, 2022, from
https://networkx.org/documentation/networkx-
1.10/overview.html

Rout, R. R., Vemireddy, S., Raul, S. K. & Somayajulu, D. V.
L. N. (2020). Fuzzy logic-based emergency vehicle
routing: An IoT system development for smart city
applications. Computers & Electrical Engineering, 88,
106839.
https://doi.org/10.1016/j.compeleceng.2020.10683
9

Yu, L., Kong, D., Shao, X. & Yan, X. (2018). A Path Planning
and Navigation Control System Design for Driverless
Electric Bus. IEEE Access, 6, 53960–53975.
https://doi.org/10.1109/ACCESS.2018.2868339

Zeng, W. & Church, R. L. (2009). Finding shortest paths on
real road networks: The case for A*. International
Journal of Geographical Information Science, 23(4),
531–543.
https://doi.org/10.1080/13658810801949850

© Author(s) 2022.
This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

