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 Automatic vehicle detection from unmanned aerial vehicles (UAVs) is an important task in the 
remote sensing domain and plays a pivotal role in many applications such as traffic 
monitoring, parking lot management, search and rescue tasks. Inspired by the success of the 
deep learning paradigm in image processing applications, many object detection, and tracking 
approaches have been developed and successfully employed in UAV-based object detection 
studies. In this study, automatic vehicle detection and instance segmentation was conducted 
using YOLOv7, which is the latest version of the You Only Look Once (YOLO) model from high-
resolution UAV data obtained from Gebze Technical University campus in Turkey. For this 
purpose, vehicle images were collected from the UAV data of the study area, and the vehicles 
in the images were manually annotated with the LabelMe annotation tool. With the created 
dataset, the YOLOv7 algorithm was trained and tested with a transfer learning approach on 
Google Colab's virtual machine. Experimental results revealed that the YOLOv7 model 
achieved the Precision, Recall, and mAP@0.50 values for the bounding boxes and masks of 
vehicles as 99.79%, 97.54%, and 99.46%, respectively. 

 
 
1. Introduction  

 

Nowadays, there is a huge increase in the utilization 
of unmanned aerial vehicles (UAVs) for a wide range of 
applications, including disaster management, smart 
agriculture, transportation, and surveillance. Compared 
with conventional satellite systems, UAVs afford several 
capabilities such as high spatial resolution, a large field of 
view, low cost, flexible and effective data acquisition 
[Ammar et al. 2021]. Considering these unique 
capabilities, UAVs have become an indispensable 
technology in various image processing applications 
including automatic object detection, tracking, and image 
classification. In this context, the detection of numerous 
objects such as trees [Yildirim et al. 2022], vehicles [Tang 
et al. 2017a], buildings [Boonpook et al. 2018], and 
pedestrians [Shao et al. 2021] from UAV data has recently 
attracted increasing attention from researchers. 
Specifically, the recognition of vehicles from UAV data is 
a significant research topic as it has many useful 
applications including traffic management, surveillance, 
search and rescue tasks. 

Traditional vehicle detection algorithms in aerial 
imagery mostly adopt sliding window search and hand-

crafted features (e.g., histogram of oriented gradients, 
local binary patterns). However, the sliding window 
search produces a large number of candidate windows, 
leading to high computational complexity. Moreover, 
manually extracted features have restricted 
representation power for the target object. Due to these 
drawbacks, it is arduous for traditional vehicle detection 
methods to achieve real-time performance and high 
detection accuracy [Tang et al. 2017b]. 

With the advent of the deep learning paradigm, many 
convolutional neural network-based object recognition 
architectures have been recently developed, and they 
have been increasingly employed in object detection 
applications from aerial images [Yildirim and Kavzoglu 
2022]. Among these, YOLO models based on the "You 
Only Look Once" approach are the most well-known 
object detectors as they can achieve real-time 
performance and high detection accuracy [Redmon et al. 
2016]. Furthermore, the YOLOv7, the latest version of 
YOLO, performs instance segmentation tasks as well as 
object detection [Wang et al. 2022]. 

The main objective of this study is to automatically 
detect vehicles from high-resolution UAV data and to 
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obtain pixel-wise masks for each detected vehicle. To 
achieve this goal, the YOLOv7 model was employed in the 
vehicle dataset generated from the UAV data obtained 
from the Gebze Technical University (GTU) campus in 
Turkey. The performance of the model was investigated 
using Precision, Recall, and mAP evaluation metrics. 
 

2. Method 
 

2.1. Study area and UAV data acquisition 
 

GTU Campus is located in Kocaeli province in the 
Northwest side of Turkey (Figure 1). The area is nearly 
2.5 km2 and covered by different land cover classes such 
as buildings, roads, and varied vegetation. The 
topography is mostly flat and orthometric elevation is 
between 2 m and 50 m.   
 

 
Figure 1. The UAV orthomosaic of GTU Campus 
 

For the acquisition of high-resolution UAV 
orthomosaic, DJI Phantom 4 Pro V2 UAV was used. The 
geometry of the captured aerial photos was corrected by 
using 86 mobile ground control points (GCP) which were 
measured by CHC-i80 GNSS receiver. Table 1 shows the 
specifications of used materials for UAV data acquisition. 
 

Table 1. Specifications of used materials  
DJI Phantom IV Pro V2.0 UAV 

Specification Value 

Camera 
4K, HD, 1080p, 1”, effective 
pixel resolution 20 MP 

Gimbal 3-axis (pitch, roll, yaw) 

Hover accuracy range 
± 0.1 m V, ± 0.5 m H (Vision) 
± 0.3 m V, ± 1.5 m H (GPS) 

Flight duration Max. 30 minutes 
Weight and speed 1375 g, Max. 20 m/s in S-mode 
Operating temperature 0° to 40°C 

CHC-i80 GNSS Receiver 

GNSS technology 
GPS, GLONASS, GALILEO, 
BeiDou, SBAS, NavIC 

Positioning accuracy RTK 
± 0.8 cm H, ± 1.5 cm V with 
initialization reliability >99.9% 

Network-RTK Available 
  

According to the land use and land cover in the 
Campus, the UAV flights were organized as polygonal, 
bundle-grid, and circular. While the nadir camera view is 
applied in polygonal flights, 70° was preferred for 
bundle-grid and circular flights. In all flights, minimum 
front and side overlap ratios were applied as 80% and 
60%, respectively. The flying altitude was chosen as 80 
m for polygonal and bundle grid flights and 30 m for 
circular flights. Totally, 8333 RGB aerial photos with ≤2.2 
cm GSD were captured and used for orthomosaic 
generation [Sefercik et al. 2022]. 

2.2. Data preparation 
 

To build a vehicle dataset, a total of 200 images with 
512x512 pixel-sized were collected from the UAV data. 
The vehicles in each image were manually labeled with 
the polygon shape using the open-source image labeling 
tool LabelMe [Wada, 2016] and ground-truth masks 
were obtained. Figure 2 depicts the annotation process 
of a sample image in the dataset and the corresponding 
ground-truth instance segmentation mask. Unlike 
semantic segmentation, instance segmentation identifies 
each target as a different instance, regardless of its class. 
Thus, each vehicle in the image was masked in distinct 
colors as can be seen from the generated ground-truth 
mask. Afterward, the annotated dataset was divided into 
training, validation, and testing datasets at a ratio of 
70:20:10, respectively. 
 

  

(a) Annotation of a sample image (b) Generated ground-truth mask 

Figure 2. Dataset labeling process with LabelMe 
 

In the implementation of deep learning models in 
object detection studies, a high-quality dataset 
containing a large number of images immensely 
enhances the training performance and prediction 
accuracy of the model. Therefore, different variations of 
the existing images were obtained in this study by 
utilizing several data augmentation techniques to boost 
the generalization capability of the model and prevent 
overfitting. For this aim, the training dataset was 
extended by horizontal flipping, randomly cropping 0 
and 50 percent of the image, and adding salt and pepper 
noise to 5 percent of the pixels in the image. The samples 
of horizontally flipped, cropped and noise added images 
are illustrated in Figure 3. 

 

  
(a) Original image (b) Horizontal flipping 

  
(c) Random cropping (d) Random noise adding 

Figure 3. Data augmentation methods 
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2.3. YOLOv7 algorithm 
 

In YOLOv7, the latest detector in the YOLO series, 
several changes were made in architecture to improve 
the detection accuracy and speed of the model. An 
extended efficient layer aggregation network (E-ELAN) 
based on the use of expanding, shuffling, and merging 
cardinality was proposed on its backbone. This network 
continuously improves the learning capability without 
losing the original gradient path. In addition, it was 
introduced the utilization of a compound model scaling 
approach to retain the features that the model had in the 
initial design and thereby maintain an optimal structure. 
Moreover, the planned re-parametrized convolution was 
proposed in YOLOv7. To improve training, label 
designers and soft labels were introduced. This process 
generates two types of soft labels, namely course labels 
and fine labels. This mechanism is significant because it 
enables fine and coarse labels to be dynamically adjusted 
during the training process [Wang et al. 2022].  

In addition to the foregoing, there are brand-new 
features that were not available in the previous versions 
of YOLO. The first one is instance segmentation that 
enables YOLO to segment objects pixel-wise. The second 
is pose estimation, which is beneficial for understanding 
body movement. 
 

2.4. Design and implementation 
 

For the experiment, Python programming language 
and the PyTorch framework were utilized. The training 
and testing processes of the model were carried out on 
the cloud-based Google Colab environment, which 
provides access to the NVIDIA Tesla T4 GPU. In the study, 
the transfer learning approach was adopted because a 
relatively small data set was generated. That is, instead 
of training the model end-to-end from scratch, the 
training process of the YOLOv7 model was initialized 
from the pre-trained weights obtained on the COCO 
dataset. The hyperparameters utilized in the training 
phase of the model are given in Table 2. 
 

Table 2. Experimental hyperparameter configuration 

 

3. Results  
 

As a result of the training and validation process of 
YOLOv7, three types of losses were generated, namely 
bounding box loss, segmentation loss, and objectiveness 
loss. As can be seen from Figure 4, all loss values showed 
a decreasing trend during the training and no overfitting 
was observed in the model. The training loss converged 
in the early stages of the training while the validation loss 
converged at the end of the training. After 100 epochs of 
training, the minimum value was reached in the training 
and validation loss curves. 

 
(a) Training loss graphs 

 
(b) Validation loss graphs 

Figure 4. Convergence of the training and validation loss 
curves 
 

To assess the performance of the trained model, 
Precision, Recall, and mean average precision (mAP), 
calculated at the intersection over union (IoU) threshold 
value of 0.50, accuracy metrics were utilized (Table 3). 
The model achieved the Precision, Recall, and mAP@0.50 
values for both the bounding boxes and masks of vehicles 
as 99.79%, 97.54%, and 99.46%, respectively. 
Considering the computational burden, the model 
exhibited superior performance in detection and 
segmentation tasks with only training for about 49 
minutes. Additionally, the prediction time of the model 
per test image is about 62.3 milliseconds.  
 

Table 3. Performance evaluation of the YOLOv7 model 
Metrics Values 

Precision (%) 99.79 

Recall (%) 97.54 

mAP@0.50 (%) 99.46 

Training time 48 min 43 sec 

Average detection speed (ms) 62.3 

 

Apart from the accuracy assessment and computation 
time evaluation, the visual detection and segmentation 
results of the model on the testing dataset are given in 
Figure 5 to better investigate the performance of the 
model. It was observed that the YOLOv7 model 
successfully predicted the bounding boxes and 
segmentation masks of the vehicles, and they fitted the 
object boundaries correctly. Moreover, the model 
performed well in detecting vehicle objects with diverse 
backgrounds such as shadows, parking lots, and roads. It 
was also observed that the model gave remarkable 
results in identifying different vehicle types, orientations, 
and sizes. Even though many vehicle objects were located 
very adjacent to each other in the image, the model was 
able to accurately draw the boxes and masks of these 
objects. When the confidence scores in the upper left of 
the bounding box drawn for each vehicle were examined, 
it was obvious that the model detected each vehicle with 
a confidence score of more than 90%. 

Hyperparameters Values 

Image size 640 x 640 

Epochs 100 

Batch size 16 

Learning rate 0.01 

Momentum 0.937 

Weight decay 0.0005 
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Figure 5. Examples of vehicle detection and instance segmentation results of the YOLOv7 model 

 
4. Conclusion  
 

In this study, automatic vehicle detection from 
high-resolution UAV imagery was carried out using 
the state-of-the-art deep learning-based YOLOv7 
object detector. Besides, pixel-wise masks of each 
detected vehicle were obtained by utilizing the 
instance segmentation feature of YOLOv7. Thanks to 
this feature, vehicle objects belonging to a single 
class in an image were segmented as distinct 
instances, thus each vehicle could be distinguished 
from the other. According to the experimental 
results, it was observed that the model could 
correctly identify vehicles from UAV data with mAP 
of about 99%. As a result of the study, it was 
concluded that YOLOv7 achieved satisfactory results 
in terms of accuracy and speed in detecting vehicles 
from UAV imagery.  
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