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 Machine learning (ML) techniques have been significant potential for the image classification; 
however, they behave as a black box because of the use of unknown descriptors in model 
construction. Thus, explainable Artificial Intelligence can assist with comprehending the 
prediction process of a model.  In this study, XgBoost and Random Forest were utilized to 
generate LULC maps for the Özbağ district of Krışehir, a highly forested through the valley, 
using Jilin-1 GP01 hyperspectral image. Accordingly, the overall accuracies of thematic maps 
produced by XgBoost and Random Forest were estimated as 93.17% and 91.98%, 
respectively. Moreover, the Shapley additive explanations (SHAP) technique is employed to 
understand the output of the models. After SHAP analysis of the ML models, the feature 
importance of each spectral band was determined. Therefore, given the trained by both 
algorithms, Band 7 was determined the most important of the hyperspectral bands used in 
this study. According to the Shapley values, band 5 in the Xgboost model and Band 7 in the 
random forest model are efficient in class-based evaluations for identifying the bare soil class 
with the highest F-score value.  Although the differences were obtained in the SHAP analysis 
according to some spectral bands since the working principles of the classification algorithms 
are different.  

1. Introduction  
 

Hyperspectral imaging technology has expanded, 
thanks to its extensive variety of applications and 
specialties. It provides digital images composed of 
tens/hundreds of spectral bands which has a tiny range 
(Kavzoglu and Yilmaz 2022). With the ability to 
recognize short spectral ranges, hyperspectral images 
have commonly used widespread applications in 
numerous fields (Moharram and Sundaram 2022).  
Particularly, HSI has been utilized extensively in 
agricultural environmental studies (i.e., land use land 
cover (LULC) mapping), biology and mineral exploration. 
Each pixel in HSI relies on characteristics from a small 
area surrounding the pixel, rather than attributes 
directly associated with the pixel itself (Liu et al. 2019). 

Many techniques used in the early stages of HSI 
analysis research focused on using the spectral 
signatures of hyperspectral images for classification. For 
this purpose, many pixel-wise classification techniques 
(e.g., Support Vector Machine, Maximum Likelihood, 
Decision Tree, Random Forest, and eXtreme Gradient 
Boosting-XgBoost) have been employed for the 
classification of HSIs (Sothe et al.2020). Furthermore, 
these techniques have demonstrated outstanding 

success in the classification of hyperspectral images  
according to the recent studies (Gore et al. 2021; 
Moharram and Sundaram 2022) . 

Because of the variability of band spectrum, 
hyperspectral image classification has been recognized 
in the literature as a complex issue. Consequently, 
machine learning (ML) approaches have been developed 
as a useful method for analyzing hyperspectral images. 
However, ML approaches operate as black boxes despite 
their considerable capacity in this area (Arrieta et al. 
2020). 

Artificial intelligence (AI), including machine learning 
(ML) techniques, can be employed to construct powerful 
models that provide remarkable prediction or 
classification performance in a massive variety of 
difficult areas. Nevertheless, they often have a complex 
system (i.e., black-box structure), which may impair to 
ability to comprehend the data. At this point, ML models 
with explainable AI approaches can be rendered more 
transparent and interpretable, and consequently their 
inferences can be helped generate to improve model 
performance (Arrieta et al. 2020). For instance, SHAP 
(SHapley Additive exPlanations) algorithm is a 
commonly employed approach for interpreting black box 
models (Kavzoglu et al. 2021). 
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The aim of this work is to evaluate the performance of 
XgBoost, and Random Forest classifiers using Jilin-1 
GP01 hyperspectral image. Besides, this study 
demonstrates how to interpret the predictions of the 
aforementioned classification models using an 
explainable AI method, namely SHAP. 

 

2. Methodology 
 

2.1. XgBoost Algorithm 
 

XgBoost is a gradient-boosted decision tree method, 
which consecutive decision trees are generated(Chen 
and Guestrin 2016). The weights are significant 
parameters because they play a crucial role in this 
algorithm. In other words, all independent variables that 
are supplied into the decision tree that used predict 
outcomes are allocated weights. The weight of variables 
for which the tree produced incorrect predictions is 
enhanced, and these variables are then supplied to a 
second decision tree. Thus, the ensemble of these 
independent classifiers yields a robust and more 
accurate model. 

 

2.2. Random Forest Algorithm 
 

Random Forest has become a popular ensemble 
learning technique for developing predict rules based on 
multiple types of characteristics without initial 
assumptions about the relationship amongst dependent 
features. The success of the algorithm depends on how 
the decision trees are generated. This technique includes 
two main steps. In the first step, each tree is created using 
random samples. Also, whole trees are the same size 
although being trained in different ways. Two-thirds of 
the training data is used to train the trees and one-third 
to evaluate the model. It maintains tree strength while 
reducing correlation. The second stage uses predictor 
variables to separate all tree nodes. It is crucial to select 
few features with enough predictive capacity and 
minimal correlation  (Breiman 2001). 

 

2.3. Interpretation of ML Model  
 

The complex structure of ML algorithms (i.e., 
XgBoost and Random Forest) makes them difficult to 
explain and evaluate their outcomes. Explaining model 
outputs helps to identify the features that affect the 
model, providing more reliable and robust prediction 
performance. For this aim, SHapley Additive 
exPlanations (SHAP) method was utilized to explain and 
interpret ML model outputs (Lundberg and Lee 2017). It 
is one of the approaches used for explainable artificial 
intelligence and is based on the game-theory explaining 
the performance of a machine learning model. It utilizes 
the strategy of additive feature importance, which the 
output of model is stated as the linear addition of 
parameters of the model input to construct an 
interpretable method (Kavzoglu et al. 2021).  

Tree SHAP is a quick and accurate method for 
computing SHAP values for tree-based approach 
including ensemble methods, considering a variety of 
possible feature dependence assumptions. In this 
manner, two tree-based  ML algorithms (i.e., XGboost and 

Random Forest) were employed for HSI classification in 
this study. In addition, Tree SHAP was implemented for 
explaining the model predictions considering the tree-
based architecture of these algorithms. 

 

3. Study Area and Dataset  
 

The Özbağ district of Kırsehir province in Turkey was 
chosen as the study area (Fig.1.). The Jilin1-GP01 
hyperspectral image of June 30, 2021, was used to 
produce a thematic map of the study area that is a highly 
forested through the valley.  

 
Figure 1. The study area of Kırsehir in Turkey.  
 

Jilin1-GP01, launched in 2019, is a satellite system 
with a 12-bit radiometric resolution capable of 
hyperspectral sensing. The image has three spatial 
resolutions (5m, 10m and 20m) and consist of a total of 
20 spectral bands, including one panchromatic band 
(Table 1.).   
 
Table 1. Technical specifications of the hyperspectral 
Jilin1-GP01 satellite image. 

 
It should be stated that all bands of Jilin-1 GP01 image 

atmosphericaly and geometrically  corrected  before 
image processing stage. The Gram-Schmidt pan-
sharpening technique was used to resample 10- and 20-
m spatial resolution bands to a 5 m resolution.  

According to characteristics of study area, five LULC 
classes, including impervious surface, soil bare, rock, 
forest, and vegetation, were used in the classification 
process to generate thematic maps. In order to 
implement supervised classifications, the ground-
reference dataset was splitted into training and testing 

Band No 
Spectral 

Range (nm) 

Spatial 
Reso. 
(m) 

Band 
No 

Spectral 
Range (nm) 

Spatial 
Reso. 
(m) 

B_0  450-800 >5 B_10 698.75-718.75 10 

B_01 403-423 5 B_11 732.5-747.5 10 

B_02 433-453 5 B_12 773-793 10 

B_03 450-515 5 B_13 855-875 20 

B_04 525-600 5 B_14 660-670 20 

B_05 630-680 5 B_15 677.5-685 20 

B_06 784.5-899.5 5 B_16 750-757.5 20 

B_07 485-495 10 B_17 758.75-762.5 20 

B_08 615-625 10 B_18 935-955 20 

B_09 650-680 10 B_19 1000-1040 20 
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samples. To be more specific, 500 pixels from each LULC 
class were collected for the training stage while 300 
pixels were gathered for the testing stage. Furthermore, 
the classification application was executed employing 
Jupyter Notebook with the Python programming 
language. 
 

4. Results 
 

In this study, pixel-based XgBoost and Random Forest 
classifiers were used to produce thematic maps. The 
thematic maps produced with XgBoost and Random 
Forest classification algorithms are shown in Figure 2. 

 

 
Figure 2. Thematic maps generated with XgBoost 
classifier (a) and Random Forest classifier (b) 

 
At the end of the classification stage, confusion 

matrices were estimated (Tab. 3). It should be noted that, 
equal number of pixels (300 pixels) per LULC class were 
used in generation of confusion matrices to avoid bias 
between classes. 

The overall accuracies and Kappa coefficients were 
estimated to analyze the accuracy of the thematic maps. 
In accordance with this purpose,  the overall accuracies 
of thematic maps produced by XgBoost and Random 
Forest were estimated as 93.17% and 91.98%, 
respectively. In addition, the Kappa coefficients were 
determined as 0.91 and 0.90 for both classifiers (Tab. 3). 
Besides, F-score values were generated to assess the 
predicted accuracy of LULC class-specific. The highest F-
score values (97.10% with XgBoost classifier and 96.20% 
with Random Forest classifier) were computed for the 
bare soil class in two thematic maps, according to Table 
3.  On the other hand, lowest F-Score values (87.60% 
with XgBoost classifier and 85.90% with Random Forest 
classifier) for both thematic maps were calculated for 
vegetation class. The confusion matrix indicates that the 
vegetation class is particularly mixtured with the forest 
class. The primary reason of this situation could be 

related to spectrally similar characteristics of vegetation 
and forest class.  
Table 3. Predictive performances of XgBoost and 
Random Forest methods 

LULC Class XgBoost (%) Random Forest (%) 

Impervious Surface 93.30 91.25 

Bare Soil 97.10 96.20 

Rock 95.55 93.00 

Forest 92.30 92.30 

Vegetation 87.60 85.90 

Overall Acc. (%) 93.17 91.98 

Kappa Coef. 0.91 0.90 

 
Combining local interpretations from the SHAP tree 

explanation function, the SHAP graph scored the most 
significant spectral bands by importance. In other words, 
The SHAP method forecasts the estimated marginal 
contribution of each characteristic. According to Figures 
3 and 4, the y-axis shows spectral bands in the 
hyperspectral dataset, the x-axis depicts the estimated 
Shapley value, and the color (i.e., blue, purple, pink, 
orange and green) shows how much of an effect the 
spectral bands have on the LULC classes.  
 

 
Figure 3. SHAP chart illustrating the feature 
importances for XgBoost model 
 

The effet of Band 7 of  Jilin-1 GP01 image exhibited a 
more considerable effect on the model output than the 
other spectral bands, demonstrating that changes to this 
band can have a significant effect on the outcomes for 
both ML classifier (Fig. 3). Besides, Band 7 contributes 
more to the bare soil, rock, and impervious surface 
classes than the others. On the other hand, it can be said 
that the first 3 spectral bands affecting the model in the 
SHAP analysis are located in the visible region. In the 

https://tureng.com/tr/turkce-ingilizce/in%20accordance%20with%20this%20purpose
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trained Xgboost model, the effect of Band 5 and Band 7 
on identifying the bare soil and rock class, respectively, 
was found to be remarkably considerable. 

When Figures 3 and 4 are compared, there are several 
similarities; yet there are also a few differences. In the 
SHAP graph for Random Forest, the feature importance 
of the first four spectral bands is close (Fig. 4.).  
Furthermore, as in the other SHAP graph for XgBoost 
classifier, it is observed that the bare soil class is highly 
affected by Band 7(Fig. 4.). The difference between the 
SHAP graphs can be attributed to that XgBoot and 
Random Forest classifier algorithms work with different 
principles during hyperspectral classification. 

When both graphs were analyzed, the common bands 
with low significance were identified as 11, 12 and 13 
Band. It was observed that the study area contains bare 
soil and rock classes and infrared bands affect the 
classifier less in the detection of them. 
 

 
Figure 4. SHAP chart illustrating the feature 
importance for Random Forest model 
 
5. Conclusion  
 

ML approaches which have been commonly 
implemented in remote sensing applications were used 
to create LULC maps in this study.  In detailed, it can be 
said that the performance of XgBoost classifier increased 
overall accuracy by aprroximately 1%, compared to 
performance of Random Forest classifier. On the other 
hand, to examine the performance of the ML algorithms 
in detail, that is to say, to understand the actions taken by 
the model and the non-linear relations that exist inside 
the model, explainable AI approaches are required. 
Therefore, the SHAP technique was used to interpret the 
classifier outputs and analyze the importance of spectral 
bands. Hereby, predicated on the trained by both 
algorithms, Band 7 was considered the most significant 

among the other spectral bands utilized in this study. 
Consequently, SHAP allows in-depth analysis of 
hyperspectral data and can guide in selecting the 
appropriate spectral bands and AI model for LULC 
classification. 
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