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 Monitoring and analyzing the rapidly changing and growing cities in terms of buildings has 
become an important demand today. Deep learning approach has been widely used recently in 
the automatic extraction of buildings, which are important inputs for smart city systems. The 
recent studies demonstrate that the deep learning approaches  greatly improves the accuracy of 
building extraction from the high-resolution images. The purpose of the study is to investigate 
the performance of K-Net architecture for building extraction from VHR imagery. In this context, 
The Wuhan University (WHU) Aerial Building Dataset was used for training, validation and 
testing. The outcomes of the study demonstrate that the extraction of buildings based on deep 
learning architectures provides sufficient results with 98.17 % Accuracy, 92.29 % Precision, 
91.20 % Recall, 84.74 % IoU and 91.74 % F1-Score. 

  

 

 

 
 
 
 

1. Introduction  
 

Building information is of great importance for 
urban planning, monitoring engineering structures, and 
building deformation monitoring. In the last decade, 
automatic building extraction from high spatial 
resolution maps has become a very effective way based 
on recent deep learning approaches.  In building 
extraction studies, there are three widely used platforms 
which are satellite remote sensing, aerial 
photogrammetry (Chen et al., 2017), and close-range 
photogrammetry based on unmanned aerial vehicles 
(UAV) (Zhuo et al., 2018). These systems have some 
advantages and disadvantages. Although remote sensing 
satellites can provide images with spatial panchromatic 
band resolution up to 0.30 m (Boonpook et al., 2021), it 
is affected by the orbital period and atmospheric 
interference. However, the mentioned systems above 
may have limitations in temporal resolution and cannot 
respond to emergency monitoring purposes. 
Furthermore, based on aerial platforms, approximately 

centimeters high-resolution orthoimages in red, green, 
blue (RGB) bands (U.S. Department of Interior 2011) can 
be produced.  Widely used recent aerial imagery has 
many advantages of low flight cost, high accuracy, and 
real-time monitoring capability.  

The uncertainty for extracting buildings caused by 
the variations in building structure and texture is a 
challenging factor for conventional methods such as 
Maximum Likelihood Classification (MLC) and Support 
Vector Machine (SVM) (Zhong et al. 2018) and object-
based classification (Liu and Xia, 2010, Wang et al., 
2004). Recently, automatic segmentation of buildings 
based on deep learning (DL) plays a significant role and 
provides efficient results especially based on high 
resolution datasets. The DL approaches can learn 
complex features depending on the given dataset and 
classify objects with high accuracy (Li et al., 2017). There 
have been various architectures throughout the years 
implemented for building extraction such as U-Net (Guo 
et al., 2020, Wang and Miao, 2022), DeepLabv3+ (Atik et 
al., 2022, Li and Dong, 2022), FPN (Sariturk and Seker, 
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2022), PSPNet (Yuan et al., 2022), U-net++ (Bakirman et 
al., 2022), etc. In this study, we aim to automatically 
extract building footprints using recently proposed 
kernel-based architecture K-Net using high resolution 
WHU aerial building dataset.  
 

2. Material and methods 
 

In this study, The Wuhan University (WHU) building 
open access dataset including aerial images was used (Ji 
et al., 2019). The featured of the dataset is given in Table 
1.  
 

Table 1. Dataset features 
Image Size 512 × 512 pixels  

Number of images 8189 natural image tiles  

Overlap no overlaps  

Resolution 0.30 meter spatial resolution  

Raw resolution 0.075 meter original data.  

Number of labels 187,000 independent buildings. 

 
Original vector data provided by land in-formation 

service which covers rural, residential, cultural and 
industrial areas of the area. The labels were improved 
with manually editing. A sample image tile with 
corresponding labels is given in Figure 1. 

  
  
 
 
 
 
 
 
 
 

Figure 1. sample image tile with labels  

In the study, WHU dataset separated as training, 
validation and test sets consisting of 4736, 1036, and 
2416 image tiles, respectively. 
 

K-Net architecture (Zhang et al., 2021) is built on a 
collection of convolutional kernels that have been 
randomly initialized and may be applied to panoptic, 
semantic, and instance segmentation. The semantic 
kernels use convolutions to produce the corresponding 
segmentation predictions. Globally, the kernels are 
dynamically modified to enhance their capacity for better 
discrimination. The bipartite matching approach is used 
to recognize objects that create a one-to-one mapping 
between kernels and instances in an image. K-Net 
architecture can be implemented for semantic 
segmentation, instance segmentation and panoptic 
segmentation. In this study, we exploited the K-Net 
architecture for semantic segmentation of building 
footprints from VHR aerial imagery. The general 
structure of the K-Net architecture can be seen in Figure 
2. 

 
 
Figure 2. The general structure of K-Net (Zhang et al., 
2021) 
 

3. Results and discussion  
 

In this study, K-Net architecture is trained on a 
workstation equipped with 11th Gen Intel(R) Core(TM) 
i9-11900 @ 2.50GHz processor and NVIDIA Quadro RTX 
5000 16 GB graphic processor unit. The architecture is 
implemented with the MMSegmentation library for 
PyTorch in the Python environment. The 
hyperparameters used in the training are given in Table 
2.  We have also used pretrained weights from ADE20K 
dataset. 
 

Table 2. Hyperparameters for K-Net training 
Number of Images 
(Training) 

4736 
 

Number of Images 
(Validation) 

1036 
 

Number of Images (Testing) 2416 
Backbone Swin Transformer 
Image Size 512 x 512 
Iterations 5000 
Loss Function Cross Entropy Loss 
Optimizer AdamW 
Learning Rate 0.00006 
Weight Decay 0.0005 
Batch Size 2 
Augmentation Random Flip, Photo Metric 

Distortion 

 
We report accuracy, precision, recall, intersection 

over union (IoU) and F1-score in order to evaluate the 
results. The accuracy metrics were calculated on pixel 
level based on True-Positive (TP), True-Negative (TN), 
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False-Positive (FP) and False Negative (FN). Accuracy 
metrics is ratio of correctly predicted pixels to total count 
of all predicted pixels which is shown in Equation 1. In 
the case of class imbalance between the target class and 
background, accuracy metric may provide misleading 
results. In order to overcome this issue, the IoU, also 
known as the Jaccard Index, was calculated by the ratio 
of overlap area between the prediction and the ground 
truth divided by the area of union between the prediction 
and the ground truth. Precision is the ratio of pixels 
predicted as buildings to all pixels predicted as buildings. 
As can be seen in Equation 2, the precision is highly 
affected by FP pixels. On the other hand, recall is the ratio 
of pixels predicted as buildings to all pixels that are 
labeled as buildings in ground truth (Equation 3). 
Similarly, the recall metric is heavily dependent on FN 
pixels which are classified as background instead of 
building. Naturally, there is a trade-off between precision 
and recall. Therefore, F1-score, also known as Dice 
coefficient, provides a more balanced metric through 
harmonic mean of precision and recall which was 
calculated by Equation 4.  
 

 
 
The evaluation results that were calculated with the test 
set of the WHU dataset are given in Table 3. All accuracy 
metrics are above 90% except IoU. However, considering 
that IoU metric is quite essential for semantic 
segmentation studies, more experiments should be 
conducted to obtain a more efficient solution. 
 
Table 3. Performance of the K-Net DL method 

Accuracy 98.17 % 
Precision 92.29 % 
Recall 91.20 % 
IoU 84.74 % 
F1-Score 91.74 % 

 
Figure 3 shows prediction examples from the test 

dataset. The visual inspections show that even though 
the used architecture can extract general structure of the 
buildings, it fails to preserve edge details of the buildings. 
Figure 3 also reveals that the DL method is more 
successful on larger buildings. It can be seen that the 
morphological features are lost especially in small sized 
buildings. On the other hand, the architecture is able to 
detect both residential and industrial buildings. 
 

4. Conclusion  
 

Monitoring of rapidly changing and growing cities 
today can be carried out by advanced remote sensing 
technologies based on recent deep learning approaches. 
It has been seen that automatic building extraction with 
recent kernel-based deep learning approach used in the 

study produces sufficient results. However, the 
architecture still fails to predict building edges efficiently 
which may require post-processing. Future studies, it is 
planned to perform more experiments and analyze the 
region with different patterns using different deep-
learning techniques. 
 

 

 

 
Figure 3. Prediction examples from the dataset. Top 
Row: Test Image, Middle Row: Ground Truth, Last Row: 
Predictions 
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