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 This paper presents an approach for the computation and evaluating of an aggregated risk 
rating matrix to quantify the vulnerability of Baku-Tbilisi-Ceyhan pipeline to multiple natural 
disasters (ND) on the territory of Azerbaijan. The scope of (ND) encompasses earthquakes, 
floods, landslides, faults, mud volcanoes and soil erosions. Our proposed approach merges 
individual risk evaluations for each ND with certain intrinsic, but with generalized and 
aggregated calculation of final risk value smoothed by Kernel Density Estimation method. 
Further, we employ Geographic Information System (GIS) technology for the spatial 
representation of the computed risks across the pipeline network by using the final and 
aggregated risk values per special cell. This visual approach facilitates a better comprehension 
of spatially varied risks and supports the effective planning of risk mitigation measures.  This 
visual approach aids in better understanding of the spatial distribution of risks, thereby 
supporting efficient strategizing of risk mitigation measures. The model was evaluated using 
the linear part of Baku-Tbilisi-Ceyhan pipeline as a case study, demonstrating the method's 
robustness and versatility. The methodology outlined in this study offers a rigorous and 
adaptable tool for ND risk assessment using GIS tools, but with some compute intensive 
methods. It aims to the enhancing pipeline safety and resilience on the territory of Azerbaijan 

 
 
 
 

1. Introduction  
 

Enhancing the resilience of the infrastructural 
components within the Azerbaijani hydrocarbon 
extraction complex to safeguard against potentially 
catastrophic effects of ND presents a critical and timely 
challenge in the scientific community. The pipeline 
systems, responsible for transferring hydrocarbon 
resources from the oil and gas deposits, constitute high-
risk elements within this complex. Given the inherent 
flammability of these resources, they possess the 
capacity to initiate incidents with calamitous 
repercussions, resulting in irrecoverable ecological 
damage, loss of human lives, substantial financial and 
administrative losses, and infrastructural devastation 
(Lerche and Bagirov 2014). 

As the role of pipeline interconnectivity expands 
among various countries, coupled with the rising 
incidents of natural disasters, the relevance and 
necessity of risk assessment methods are increasingly 
emphasized (Krausmann et al. 2011). 

  
There are known ND on the territory of Azerbaijan 

that may directly have an impact to pipelines: 
earthquakes, heavy rainfalls and they are may trigger 
other events, such as landslides, mud volcanoes, floods, 
soil erosions and liquefaction (Amirova-Mammadova 
2018). 

It is common to visualize the impact and risk values 
as a single map per risk factor, but for bigger picture 
(here, using the single map) there is a need for an 
aggregation of risk values. Here comes the risk matrix, 
but with additional capabilities to evaluate the all 
required risk factor.  
 

2. Method 
 

In this study, the re-evaluated risk matrixes per 
weighted natural disaster will be used to assess each 
impact factor, smooth them using the Kernel Density 
Estimation (KDE) applied to a risk scores and at the end 
they will be mapped as a 2D array (Gramacki 2017). The 
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values assigned to each matrix cells will be adopted in 
any of relational databases (Nasser 2014) or any 
convenient textual data format, like comma delimited 
text files, JSON files or any other data table format that 
can be used by widely used GIS tools like ESRI ArcGIS or 
QGIS tools. 

 

2.1. Risk Matrix 
 

 

To study the impact of natural disasters on pipelines, 
a risk matrix is an important component in representing 
the level of safety. For the risk calculation methods, I'll 
base it on a standard 5x5 risk matrix which evaluates 
hazards based on their likelihood (from rare to almost 
certain) and their consequences (from insignificant to 
catastrophic). Thus, five level is one of the optimal 
options for levels (Blokdyk 2018).  

The more important is to identify the certain regions 
with certain hazards that may affect the pipelines (Han 
and Weng 2010). The fact that, region representing as a 
squared polygon area on the map, it could be of any size, 
from 10x10 meters up-to kilometers and classified by 
risk level. For this purpose, a distribution of risk levels 
must be prepared for squared area “Table 1”.  

This table is important part of all calculations and be 
included into the visualization of GIS maps. 
 
Table 1. Risk level distribution per ND factor 

Natural 
Disaster 

Risk Level  
(1-5, 5 is 
highest)  

Description Color 

Landslides 4 Soil movements 
in hilly or 
mountainous 
areas that can 
displace or 
damage pipelines 

Yellow 

Earthquakes 5 Ground shaking 
or rupture 
causing severe 
damages 

Red 

Flooding 3 Cause erosion or 
sedimentation 

Yellow 

Corrosion 
from soil 
chemistry 

3 Certain soil 
conditions can 
enhance 
corrosion leading 
to pipeline 
material 
degradation 

Yellow 

 
 

2.2. Calculating Risk values 
 

 
In order to deal with multiple events of hazards, 

each contribution to a single risk factor be aggregated to 
the singe risk score.  

Firstly, calculate the individual risk scores (𝑹𝒊) for 
each hazard as per Equation 1. 
 

𝑹𝒊  =  𝑳𝒊  ×  𝑪𝒊  (1) 
 

 

where 𝑳𝒊 is the likelihood and 𝑪𝒊 is the consequence of 
the 𝒊𝒕𝒉 hazard. Once we have the individual risk scores 
for each hazard (𝑹𝟏, 𝑹𝟐, …, 𝑹𝒏), then calculating the 
average risk score (𝑹𝒂𝒗𝒈) as follows: 
 

𝑹𝒂𝒗𝒈 = 
𝟏

𝒏
   ∑ 𝑹𝒊

𝒏
𝒊=𝟏  (2) 

 
In this case, n is the total number of hazards or events 

being considered. Taking the average is just the one of 
many possible methods to aggregate the risk, but suitable 
for mapping purposes. Notably, the color coding of the 
risk scores would be: 1-6 as Green (low risk), 7-12 as 
Yellow (medium risk) and 13-25 as Red (high risk). Each 
value that falls into each score might be considered as a 
gradient color as well. 

On the other hand, calculating an aggregate risk score 
using this method assumes each hazard is independent 
and equally significant, which may not always be the 
case. So, for such a complex situation, we will incorporate 
a weighting system to account for the varying 
significance of different hazards or correlations between 
events. Here we assign a weight (𝒘𝒊) to each hazard, 
which represents its relative importance or significance. 
This would typically be a value between 0 and 1, with 
total of all weights equal to 1. The next step is to calculate 
the weighed risk score (𝑹𝒘𝒊) for each hazard: 
 

𝑹𝑤𝒊  =  𝒘𝒊  ×  𝑹𝒊  (3) 
 

then, sum all of the weighted risk scores to get the 
total risk score (𝑹𝒕𝒐𝒕𝒂𝒍): 
 

𝑹𝒕𝒐𝒕𝒂𝒍  =  ∑ 𝑹𝐰𝐢

𝒏

𝒊=𝟏
 (4) 

 
and finally apply the color coding based on the risk score: 
 

𝐶𝑜𝑙𝑜𝑟(𝑹𝒕𝒐𝒕𝒂𝒍)  = {

𝐺𝑟𝑒𝑒𝑛   𝑖𝑓 1 ≤ 𝑹𝒕𝒐𝒕𝒂𝒍 ≤ 6        
𝑌𝑒𝑙𝑙𝑜𝑤  𝑖𝑓 7 ≤ 𝑹𝒕𝒐𝒕𝒂𝒍 ≤ 12     

𝑅𝑒𝑑       𝑖𝑓 13 ≤ 𝑹𝒕𝒐𝒕𝒂𝒍 ≤ 25  
 

 
This method gave is a risk score that takes into 

account both the individual risk scores and the relative 
importance of each hazard, but not considering the 
correlation between hazards. 

 
2.3. Smoothing risk scores by categories 

 
Mapping of granulated risk values over the map 

would give us coarse image even by dividing each risk 
score into sub-score. In order to smooth the risk values 
over the 2D map, we will use the Kernel Density 
Estimation (KDE) method to generate an estimation of 
the probability density function of multiple risk values 
(here small risk zones). So, while doing the KDE for each 
category, you will treat the risk values outside the 
category range as if they don't exist. 

The equation (Equation 1) for each risk category (c as 
1: Green, 2: Yellow, 3: Red) consider the data points (xi, yi) 
that fall within that category's risk score range. 
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𝑓𝑐(𝑥, 𝑦) =
1

𝑛𝑐ℎ2
∑

1

2𝜋

𝑛𝑐

𝑖=1
𝑒

−
1
2

 [(
𝑥 − 𝑥𝑖

(𝑐)

ℎ
)

2

+ (
𝑦 − 𝑦𝑖

(𝑐)

ℎ
)

2

]

 

 
So, risk levels (here categories) per impact, where 

(𝒏𝒄) is the number of data points in the (i)th category, (h) 
is the bandwidth parameter, (e) is the base of the natural 

logarithm and  𝑥𝑖
(𝑐)

 and  𝑦𝑖
(𝑐)

  are the nth pair of 2D data 
points.  

This equation (Equation 1) assumes, that the X and Y 
variables are independent for each category within the 
Gaussian kernel.  The bandwidth parameter h is very 
important in KDE as it determines the smoothness of the 
density estimate. A small h will make the estimate very 
sensitive to the data (potentially overfit), while a large h 
will make the estimate very smooth (potentially 
underfit). It's often chosen using cross-validation or a 
rule-of-thumb method (Silverman 2018). 
 
2.4. Processing 
 

Before starting the analyses on certain area of interest 
(AIO), there were made an analysis of most evident 
natural disaster events occurred on a territory of 
Azerbaijan. That analyses were a key process to 
determine the minimal dimension for AIO, where de 
identified as square of 1 km. In fact, that size is not de-
facto and can be changed from places, regions, cities and 
etc. Changing the size of AIO is adding the more analyses 
to the events and their effect. The risk level 
determination, risk weight and score calculation of AIO is 
show in Figure 1. 
 

 
Figure 1. Processing of single AIO 

 
The first step 1 is about to determine the AIO, where 

shape of pipeline must be at center of AIO. This will give 
us a proper and proportional GIS visualization of events 
area and pipeline linear part. At the step 2 we need 
identify the ND that may fit into this AIO. Surely, the 
dimension of AIO might be changed if any of identified 
ND has a broader effect. At the same step 2, we determine 
the risk parameters per event, their weights against the 
pipeline. Step 3 is about to calculation of risk matrixes 
per event. At the end (step 4) we aggregate the risks 
scores into a single risk score matrix.    

 
2.5. Assessment challenges 

 
One of challenges is the accurately description of the 

risk impact of a natural disaster that may affect the 
pipeline, then we need to disclose in a broader form the 
definition of the risk itself in order to give it a clearer 
vision of dimension of risk probability. 

Here are the some of them (ordered by complexity) 

1. Identification of risk parameters and their 
evaluations. 

2. Determination of right risk weights per risk 
parameter. 

3. Selection of proper level of granulation of area of 
interest to avoid coarsening. 

 
The first challenge can be described when assessing 

the earthquakes effects on pipelines and triggered post 
events, including NATECH (Krausmann et al. 2016). 

A three-parametric earthquake event that may affect 
the onshore pipeline is show in Figure 2. By adding color 
of risk category, we can see 3D view of earthquake effect 
on pipeline. This plot is showing only the risk at given 
location. Note, that location may change and values may 
vary.  

 

 
Figure 2. 3D earthquake risk assessment plot 

 
The same 3D plot can be generated for other ND that 

may affect the pipelines, and they may have more 
parameters, adding assessment difficulties. 

 
3. Results  
 

As a result of study, we managed a good 
visualization of aggregated risk using GIS tools. 
Moreover, adding the buffered zones along the pipeline 
route providing the clearer picture of risk areas 
(Petersen 2020).  

Figures from “Fig. 4” to “Fig. 7” are showing the 
evolution of aggregated fine-tuned risk scores from 
multiple natural hazards in a small region. The minimal 
area (which is AIO) is about 2 km2 and whole assessed 
region is 100 km2. The risk matrixes were based on mix 
of registered and assessed earth quakes, known faults 
and mud volcanoes.  

Following tools were used to accomplish the 
visualizations: 

 
• Maps were build using ESRI ArcMap 10.8 
• Calculations were done in Python 3.8 
• Output data format was CSV files 
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Figure 4. Coarse, aggregated risk scores 

 

 
Figure 5. KDE based aggregated risk scores 

 

 
Figure 6. KDE based, small tuned risk scores 

 

 
Figure 7. KDE based, fine-tuned risk scores 

 

4. Conclusion  
 

We identified several factors contributing to the 
difficulties of determination of risk weights: 

 
1. Complexity of Risk Interactions: ND often do not 

occur in isolation. They can interact and compound in 
complex ways, making it difficult to accurately assign 
weights. For example, the risk posed by an 
earthquake could increase the risk of a subsequent 
landslide, but determining exactly how much 
additional risk this interaction creates can be 
challenging. 

2. Lack of Data: For many risks, especially rare or 
unprecedented ones, there may be insufficient data to 
accurately estimate probabilities and impacts. This 
lack of data can lead to uncertainty in the risk weights. 

3. Over-simplification: In an effort to simplify, there is 
a danger of oversimplifying the complexity of risks 
and their interactions by assigning a single risk 
weight. This might lead to an underestimation of the 
actual risk. 

4. Dependence on Model: The assigned risk weights 
are only as good as the risk assessment model used. If 
the underlying model does not accurately represent 
the situation, the risk weights might be misleading. 

 
Despite the difficulties, we were able to visualize the 

risk in aggregated form, using single map with fine-
grained and tuned risk scores. 

One of the best findings, is this model can be used to 
assess the other risks by using the same matrix 
representation and weight calculations and then we can 
implement the KDE method for fine tuning the final 
output if necessary. Also, the chained operations are 
giving us flexibility to include an additional function like 
risk score determination for relative AIO regions by 
implementing the Moore neighborhood (Ilachinski and 
Zane. 2001) algorithms. 
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