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 The observation and prediction of sea level are crucial for various reasons including the 
vertical datum determination, crustal movement forecasting, oceanographic modeling, and 
coastal infrastructure planning. In Turkey, a sea level monitoring system has been established 
by the General Directorate of Mapping and aims to measure sea level. Through the Turkish 
National Sea Level Monitoring System (TUDES), sea level is monitored using data collected at 
20 tide gauge stations at 15-minute intervals. Time series analysis is considered a highly 
suitable modeling and forecasting method for data that is periodically measured. In this study, 
time series analysis models including ARIMA, SARIMA, and Holt-Winter's methods were 
applied using data from the Amasra tide gauge station within the TUDES for the year 2019. 
Additionally, a prediction for January 2020 at the same station was performed. The results 
were compared with the measured tide gauge data to assess the performance of the models. 
Evaluation criteria included the Mean Absolute Percentage Error (MAPE) for the Holt-Winter's 
method and the corrected Akaike Information Criteria (AICc) for the ARIMA and SARIMA 
models. The SARIMA (3,0,0) (0,2,2) model with an AICc value of -1307.83, indicating a 
seasonality of 12, was observed to be the best-performing model. 
 

 
1. Introduction  

 

The main objectives of geodesy are to define the 
shape and size of the earth and to obtain data on the 
spatial information of points (Vanícek and Krakiwsky, 
2015). Due to the inherent impracticality of directly 
performing mathematical calculations for the Earth's 
shape, various reference surfaces are employed to 
acquire positional information. Reference surfaces 
define the parameters necessary for the mathematical 
representation of geometric and physical quantities 
(Drewes, 2009). Depending on the scope and purpose of 
the study, different reference surfaces such as the 
sphere, ellipsoid, and geoid can be selected (Jekeli, 
2016). 

The geoid is an assumed equipotential water surface 
that extends beneath the continents (Sansò & Sideris, 
2013). This equipotential surface used for vertical 
referencing can be determined through the long-term 
measurements of the average sea level. The average sea 
level is defined as the vertical datum (Altamimi et al., 
2010). Therefore, the significance and analysis 
requirement of sea level measurements emerge. 

The sensitivity of satellite data over the past few 
decades, is approximately +3mm per year (Cazenave et 
al., 2014). For purpose of tracking that change, there is 

global cooperation to measure sea level. The 
Intergovernmental Oceanographic Commission (IOC), a 
subsidiary of UNESCO, addresses this issue on a global 
scale. The need for long-term monitoring of sea level 
changes with globally distributed tide gauge stations led 
IOC to establish the Global Sea Level Observing System 
(GLOSS). The contact organization of the system in 
Turkey is the General Directorate of Mapping 
(https://tudes.harita.gov.tr/). 

To extract reliable information from data sets 
requiring long-term observations of sea level, statistical 
analysis is necessary. Time series analysis, a type of 
statistical analysis, is a powerful option for examining 
sea level data. Time series analyses allow for 
understanding the stochastic mechanisms of the 
measured data and gaining insights into future 
predictions based on past data (Cryer and Chan, 2008). 

In this study, the time series analysis in sea level data 
for the year 2019 at the Amasra tide gauge station was 
examined using ARIMA, SARIMA, and Holt-Winter’s 
time series analysis methods, and forecasting were 
made for January 2020. The obtained forecasted values 
were compared with the actual data, and the best model 
was observed to be SARIMA (3,0,0) (0,2,2) with a 
seasonality of 12. 
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2. Material and Methods 
 

2.1. Material 
 

The task of monitoring sea level in Turkey is 
conducted under the General Directorate of Mapping 
through the Turkish National Sea Level Monitoring 
System (TUDES) system, there are 20 GNSS-integrated 
radar sensor tide gauge stations distributed along the 
coasts of Turkey and the Turkish Republic of Northern 
Cyprus, adhering to GLOSS standards. These stations 
record measurements at 15-minute intervals, capturing 
not only sea level but also meteorological parameters 
affecting sea level changes, such as atmospheric 
pressure, wind speed, humidity, and temperature 
(https://tudes.harita.gov.tr/). 

For the purposes of this study, TUDES data was 
provided by the General Directorate of Mapping, and the 
sea level data for the Amasra tide gauge station was 
accessed through the website 
https://tudes.harita.gov.tr/. 

 

 
Figure 1. Study area 

 
In the year 2019, a total of 34,921 observation units 

were obtained for the Amasra tide gauge station. To 
organize and these data, the code snippet was written 
using the Python programming language, which 
calculates daily averages for each day: The organized 
data was examined for general statistical information 
using the Minitab program, and tests for normality and 
outliers were conducted. 
 
2.2. Method 

 
Time series analysis examines the statistical 

distributions of periodic data within a specific time 
interval and consists of Autoregressive (AR) and Moving 
Average (MA) models. In AR models, the dependent 
variable is considered as a function of its past values. In 
the AR(p) model, the Zt value is represented as a linear 
function of the weighted sum of the series' past p values 
and error terms, as shown in the Equation 1. 
 
Zt =  + 1 Zt-1 + 2 Zt-2 +…+ p Zt-p + Zt                    (1) 
 

In this equation, Zt-1, Zt-2, .., Zt-p represent past 
observed values, μ represents the mean, Zt represents 
the error term, and φ1, φ2, ..., φp represent the 
coefficients of past observations. The goal in the model 
is to obtain the model order that makes the sum of 
squared errors zero and determine the unknown 
coefficients (Kara, 2009). 

In the MA method, the aim is to reduce the effects of 
momentary, erroneous, and outlier data on the overall 
data. There are various types of moving average (MA) 
methods, such as Simple, Cumulative, Weighted, and 
Exponential. The equation 2 for the MA method is 
represented as: 
 
Zt =  + αt - 1 α t-1 - … - q αt-q                                     (2) 
 

Here, 1, …, q represents the coefficients of error 
terms, and αt, α t-1, …, αt-q represent the error terms. 
The right side of the equation is expressed in terms of a 
meaningful q number of errors. The error term in the 
equation has a mean of zero and a constant variance 
(Kara, 2009).  
 
2.3.1. ARIMA 
 

It is a method used for performing univariate time 
series analysis and forecasting, also known as Box-
Jenkins models. It represents an integrated model that 
incorporates operations such as MA, autocorrelation, 
and differencing. In the model expressed as ARIMA (p, d, 
q), p denotes the degree of the autoregressive (AR) 
model, d represents the differencing operation, and q 
indicates the degree of the MA model (Cryer, 1986). The 
model is represented as shown in Equation 3. 
 

yt = α0 + ∑ 𝛼𝑡(𝑦𝑡−1 − ) + 𝜀𝑡
𝑝
𝑡=1                                 (3) 

 
Here, α0 and 𝛼𝑡 represent autoregressive parameters 

to be estimated, and 𝜀𝑡 represents the random errors 
with zero mean and finite variances. 

 
2.3.2. SARIMA 
 

For time series data that exhibit seasonality and are 
non-stationary, ARIMA models often do not yield 
satisfactory results. Therefore, SARIMA models, which 
account for seasonality, are employed. In SARIMA 
models, denoted as SARIMA (p, d, q) (P, D, Q), in addition 
to the parameters used in ARIMA (p, d, q), there are 
additional parameters P, D, and Q that represent the 
seasonal AR order, differencing operation, and seasonal 
moving average order. These models take into 
consideration both the non-seasonal and seasonal 
components, offering a more comprehensive approach 
to time series modeling (Shumway and Stoffer, 2017). 
 
2.3.3. Holt-Winter’s 
 

The Holt-Winter's method is one of the exponential 
smoothing techniques that involves a three-equation 
structure, accounting for level, trend, and seasonality. 
The seasonal equation can be formulated in two ways: 
multiplicative when trend and seasonality move 
together, and additive when they do not. (Hafid and Al-
maamary, 2011). The model is represented as shown in 
Equation 4. 

 
 
 

https://tudes.harita.gov.tr/
https://tudes.harita.gov.tr/


7th Intercontinental Geoinformation Days (IGD) – 18-19 November 2023 – Peshawar, Pakistan 

 

  92  

 

Level: Lt = α
𝑌𝑡

𝑆𝑡−𝑠
 + (1- α)(Lt-1 + mt-1 ); 

Trend: mt = β(Lt - Lt-1) + (1 - β)mt-1 

Seasonal: St(t) = γ
𝑌𝑡

𝐿𝑡
  + (1 - γ) St-s(t)                         (4) 

Forecast: Ft+τ = (Lt + mtq) St-s(t) 
 

Here; α, β and γ are smoothing constants, t is the time 
period, Yt is the actual observed values, s is the length of 
seasonality, Lt is the level component, mt is the trend 
component, St is the seasonal component and Ft+τ is the 
forecast for τ periods ahead. 
  
3. Application and Results 
 

For all modeling, the 2021 version of the Minitab 
program was employed. The model evaluation criterion 
is based on AICc. AICc is essentially AIC with an extra 
penalty term for the number of parameters. The smaller 
AIC is, the better the model fits the data (Minitab, 2021). 
The AIC is an information-theoretic indicator rooted in 
Kullback-Leibler Divergence, primarily assessing the 
information loss incurred by a given model. 
Consequently, the AIC criterion operates on the premise 
that the less information a model forfeits, the higher its 
quality (Kasali and Adeyemi, 2022).  On the other hand, 
the BIC criteria are founded on Bayesian theory, with 
the goal of maximizing a model's posterior probability 
given the available data. The Bayesian information 
criterion (BIC) serves as a pivotal tool in the realm of 
statistics for model selection from a finite set of options. 
It maintains a close relationship with the Akaike 
information criteria and is partly reliant on the 
likelihood function (AIC) (Kasali and Adeyemi, 2022). 
Here are the AICc and BIC formulas (Minitab, 2021): 

 
AIC = 2[(ρ + 1) – Lc] ; Lc(yi μi Φ) = ∑ 𝑙𝑖

𝑛
𝑖=1  

li = ln(f(yi,  μ𝑖̂ , Φ )) ; yi ln( μ𝑖̂) + (mi - )ln(1 -  μ𝑖̂)  
 
Here; p: the regression degrees of freedom; Lc: the 

log-likelihood of the current model; yi: the number of 
events for the ith row; mi: the number of trials for 
the ith row; Φ: 1, for binomial 
models; μ𝑖̂: the estimated mean response of the 𝑖th row 

 

AICc = -2ln (Likelihood) + 2p + 
2𝑝(𝑝 +1)

𝑛 − 𝑝− 1
 

AICC is not calculated when 𝑛 −  𝑝 − 1 ≤ 0 
BIC = -2ln (Likelihood) + p ln(n) 
 
The ARIMA model that does not account for 

seasonality was tested. The optimal parameters for the 
model were calculated with the assistance of the 
program, resulting in ARIMA (2,0,2) (Figure 3). 

The SARIMA model takes seasonality into account, 
all combinations of the following values were tested: “3, 
4, 12” for seasonality; “0, 1, 2” for differencing; “0, 1, 2” 
for seasonal differencing. According to the AICc 
criterion, the models that provided the best results for 
SARIMA (0,1,0) (1,2,3), SARIMA (0,0,2) (3,2,0), SARIMA 
(0,1,0) (1,2,3), SARIMA (3,0,0) (0,2,2) and SARIMA 
(1,2,2) (3,1,0) were given Figure 4a and 4b and Figure 
4c according to seasonality “ 3 4 and 12” 
 

 
Figure 3. ARIMA (2,0,2) model 
 

 
Figure 4a. SARIMA (0,1,0) (1,2,3) and SARIMA (0,0,2) 
(3,2,0) models 
 

 
Figure 4b. SARIMA (0,1,0)(1,2,3) model 
 

 
Figure 4b. SARIMA (3,0,0) (0,2,2) and SARIMA (1,2,2) 
(3,1,0) models 
 

The model performance summaries of ARIMA and 
SARIMA models were made according to Mean Square 
Error (MSD), AICc and BIC values, (Table 1). 
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Table 1. Model Summaries 
Model MSD  

(Mean  
Sq. Dev.) 

AICc (-) BIC (-) 

ARIMA(2,0,2) 0.0007982 1553.29 1530.13 

SARIMA(0,1,0)(1,2,3)3 0.0010915 1389.50 1370.26 

SARIMA(0,0,2)(3,2,0)3 0.0010598 1407.44 1384.37 

SARIMA(0,1,0)(1,2,3)4 0.0009654 1420.31 1401.10 

SARIMA(3,0,0)(0,2,2)12 0.0010689 1307.83 1285.09 

SARIMA(1,2,2)(3,1,0)12 0.0010199 1365.45 1338.75 

 
Here what the abbreviations represent: 

MSD: Mean Square Deviation 
 

Finally, the Holt-Winter’s method was applied to 
the data. Sequentially, combinations of α, β, and γ 
parameters ranging from “0.1 to 0.9” were tested for 
seasonality values of “3, 4, and 12”. The best result was 
obtained with a seasonality of “4” and α, β, γ parameters 
set to “0.4”, which was adopted in the additive model. 

 

 
Figure 5. Holt-Winter’s model 
 

The obtained outputs to evaluate the model are as 
follows: 
 
Table 1. Holt-Winter’s model accuracy measures 

Measures MAPE MAD MSD 

Values 6.29203 0.03136 0.00161 

MAPE: Mean Abs. Per. Error; MAD: Mean Abs. Dev. 
 

4. Conclusion  
 

In the scope of this study, time series analysis 
models, including ARIMA, SARIMA, and Holt-Winter's 
methods, were applied using the 2019 data from the 
Amasra tide gauge station within the TUDES system. 
Furthermore, forecasting was made for the same station 
for the month of January 2020. The obtained results 
were compared with the measured tide gauge data, and 
the model's performance was assessed. Evaluation 
criteria included the MSD for the Holt-Winter's method 
and the AICc for the ARIMA and SARIMA models. The 
best model observed was the SARIMA (3,0,0) (0,2,2) 
model with an AICc value of “-1307.83”, indicating a 
seasonality of “12”. And finally, the MSD value of 
SARIMA (3,0,0) (0,2,2)12 method was compared with the 
MSD value of the Holt Winter's method, revealing that 
the SARIMA model with the value of “0.0010689” 

outperformed the Holt-Winter's method with the value 
of “0.00161”. 

At the light of these explanation and applications it 
is said that the SARIMA (3,0,0) (0,2,2)12 model is more 
suitable for these sea level data. 
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