
* Corresponding Author Cite this study 

*(esrayildirim@gtu.edu.tr) ORCID ID 0000-0002-4951-0488 
 (kavzoglu@gtu.edu.tr) ORCID ID 0000-0002-9779-3443 

Yildirim, E., & Kavzoglu, T. (2023). Detection of collapsed buildings from post-earthquake 
imagery using mask region-based convolutional neural network. Intercontinental 
Geoinformation Days (IGD), 7, 119-122, Peshawar, Pakistan 

 

7th Intercontinental Geoinformation Days (IGD) – 18-19 November 2023 – Peshawar, Pakistan 
 

 

 

 

7th Intercontinental Geoinformation Days  

 

igd.mersin.edu.tr 

 
 
 

Detection of collapsed buildings from post-earthquake imagery using mask region-based 
convolutional neural network 
 

Esra Yildirim*1 , Taskin Kavzoglu 1  

 
1 Gebze Technical University, Faculty of Engineering, Department of Geomatics Engineering, Kocaeli, Türkiye 
 
 
 

Keywords  Abstract 
Earthquake 
Remote sensing 
Deep learning 
Mask R-CNN 
Building detection 
 
 

 After large-scale natural disasters such as earthquakes, tsunamis, and floods, the rapid 
identification of collapsed buildings from high-resolution imagery plays a crucial role in post-
disaster damage assessment, reconstruction, and emergency rescue operations. Deep learning 
(DL) architectures, widely applied across various scientific domains, have also been used for 
extracting damaged buildings from aerial and satellite images. This study is focused on 
identifying collapsed buildings using a DL algorithm applied to remotely sensed data collected 
after the February 6, 2023, Kahramanmaraş earthquake in Türkiye. To achieve this, post-
earthquake WorldView-3 image with a spatial resolution of 0.3 m were obtained to establish 
a building dataset, from which the boundaries of collapsed and intact buildings were manually 
outlined. The Mask R-CNN model was then trained and validated using various 
hyperparameter combinations to optimize its performance. Experimental results revealed 
that the Mask R-CNN model with a ResNet-50 backbone yielded the most accurate results, 
successfully distinguishing between intact and collapsed buildings with an Average Precision 
(AP) of approximately 81% and 69%, respectively. The findings of the study illustrate the 
promising potential of using Mask R-CNN with high-resolution imagery for the detection and 
mapping of collapsed buildings following earthquake events. This application is particularly 
significant for post-disaster operations and mitigation studies. 

 
 

1. Introduction  
 

Earthquakes are considered among the most 
catastrophic natural calamities, causing extensive 
damage and resulting in significant loss of life and 
property. Even though earthquakes are unpreventable, 
the rapid detection and mapping of collapsed buildings 
after an earthquake is of utmost significance in 
emergency response and reconstruction efforts. 
Moreover, the extent, location, and degree of building 
damage, as well as the collapsed building rate, reflecting 
the magnitude of the earthquake, are essential 
information in supporting the evaluation processes of 
post-earthquake disasters (Song et al. 2020). While it is 
possible to obtain an accurate assessment of building 
damage through field surveys, this conventional method 
can be time-consuming and costly. It is also inefficient for 
the rapid evaluation of collapsed buildings during rescue 
operations (Turker and San 2004).  

Due to progress in satellite and sensor technology, 
remote sensing methods can now capture Earth’s surface 
with incredibly high spatial, spectral, and temporal 
resolutions. As a result, they have become a potent tool 

for identifying and tracking the impacts of natural 
disasters (Rathje and Adams 2008; Dell’Acqua and 
Gamba 2012; Dong and Shan 2013). A range of studies 
has been executed aiming to detect building damages 
triggered by earthquakes through the utilization of aerial 
and satellite imagery (Serifoglu Yilmaz et al. 2023; 
Turker and San 2004; Turker and Sumer 2008).  

Recent research has explored the application of 
Convolutional Neural Networks (CNNs) in identifying 
building damage, displaying their effectiveness in 
automatically recognizing affected buildings within 
remotely sensed images. For instance, Moradi and Shah-
Hosseini (2020) applied U-Net architecture to pre- and 
post-imagery of the Haiti earthquake images 
(WorldView-2) to identify damaged buildings and 
obtained 68.71% overall accuracy. Zhan et al. (2022) 
presented an adapted Mask R-CNN model designed for 
identifying impaired buildings and categorizing these 
structures based on the severity of their damage. Using 
the aerial images taken after the Kumamoto earthquake, 
their proposed model could detect buildings with about 
90% accuracy and classified damage levels with about 
80% accuracy. 
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The aim of this research was to detect buildings that 
collapsed after the February 6, 2023, Kahramanmaraş 
Earthquake using remotely sensed imagery. To 
accomplish this, post-earthquake WorldView-3 image 
were utilized to create a dataset of buildings, and a DL-
based Mask R-CNN model was trained and validated with 
this dataset. The study appraised the efficacy of the 
model in detecting collapsed buildings and employed the 
trained model to locate and map damaged structures in a 
different study zone. 

 

2. Study Area and Dataset 
 

On February 6, 2023, Türkiye was struck by two 
strong and consecutive earthquakes of magnitude 7.8 
and 7.5, causing catastrophic damage to lifelines, 
facilities and buildings. The first earthquake occurred at 
01:17:34 UTC in the Pazarcık district in the 
Kahramanmaraş province (southern Türkiye). About 
nine hours later, an aftershock occurred in the Elbistan 
district of Kahramanmaraş at 10:24:48 UTC (Goldberg et 
al. 2023). 

In this study, the WorldView-3 image acquired on 
February 7, 2023, just one day after the earthquake, with 
0.3 m spatial resolution covering the part of the Islahiye 
district of Gaziantep province, one of the mostly affected 
provinces, was employed in the analyses. Building 
boundaries were manually digitized in ArcGIS Pro 3.03 
software in two categories (i.e., "Intact" and "Collapsed") 
using high-resolution base images of General Directorate 
of Mapping, a national mapping agency of Turkey, as a 
reference (Figure 1). 
 

 
Figure 1. WorldView-3 image in the study area acquired 
after the 2023 Kahramanmaraş earthquake and locations 
of intact and collapsed building footprints 

To provide training and validation datasets for the DL 
model, the WorldView-3 image was cropped into 
256×256 pixel-sized image chips with a stride of 
128×128 pixels (i.e., %50 overlap). The overlap was 
applied both to expand the dataset and to ensure that 
each image chip contained at least one building instance 
of two classes. Besides, the dataset was augmented using 
180⁰ rotation to increase the number of image samples 
thus improving the robustness of the model. 
Consequently, a building dataset containing a total of 
3,792 image chips and 31,038 intact and 1,108 collapsed 
building features was obtained. In addition, 
corresponding label masks for each image chip were also 
generated (Figure 2). 
 

 
Figure 2. Building dataset, (a) sample of image chip and 
(b) corresponding ground-truth mask  
 

3. Methods 
 

3.1. Mask Region-Based Convolutional Neural 
Network (Mask R-CNN) 

 

Mask R-CNN, developed by He et al. (2017), is an 
enhanced version of Faster R-CNN, capable of predicting 
both bounding boxes and detailed pixel-wise masks of 
objects (Figure 3). Mask R-CNN, similar to the Faster R-
CNN algorithm, employs a two-stage detection pipeline 
that starts with the same initial phase, scanning the 
entire image and generating proposals. In the 
subsequent phase, while predicting the class and 
bounding box offsets, Mask R-CNN also generates a 
segmentation mask for each Region of Interest (RoI). 
Considering the network architecture of the Mask R-CNN 
model, it involves: (i) a backbone network (ResNet) 
responsible for extracting features over a whole image 
and creating feature maps; (ii) a Region Proposal 
Network (RPN) for generating regions (RoIs) for areas 
where objects can be found from feature maps; (iii) a RoI 
classifier and a bounding box regressor for classifying 
RoI and refining the bounding box; (iv) a Fully 
Convolutional Network (FCN) to generate a pixel-wise 
segmentation mask (Potlapally et al. 2019). 
 
3.1. Design and implementation 
 

The training and validation of the Mask R-CNN model 
was implemented in ArcGIS API for Python. In order to 
obtain the best-performing model, different 
hyperparameter combinations, shown in Table 1, were 
utilized in the training of the model. Thus, four 
experiments were conducted using ResNet-50 and 
ResNet-100 backbone architectures, batch sizes, epochs, 
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and the experimented hyperparameters were adjusted 
according to the hardware configuration. Additionally, in 
each model, 90% of the created buildings were used for 
training and 10% for validation. All experiments were 
carried out on a Windows 11 laptop with an Intel® 
Core™ i7-10870H CPU, and a NVIDIA GeForce 3060 RTX 
GPU, with 32 GB RAM memory. 
 

 
Figure 3. Architecture of the Mask R-CNN algorithm 
 

Table 1. Hyperparameter configuration for Mask-RCNN 

 Hyperparameters 

Experiment Backbone Batch size Epoch 

1 ResNet-50 2 100 

2 ResNet-50 4 100 

3 ResNet-100 4 100 

4 ResNet-50 2 200 

 

4. Results  
 

The performances of the four trained models were 
evaluated using the Average Precision (AP) metric 
calculated for intact and collapsed building classes. The 
overall accuracy assessments indicated that using Mask 
R-CNN with a ResNet-50 backbone, trained for 200 
epochs across two batch sizes, resulted in the highest AP 
scores for both intact and collapsed building categories 
(Table 2). More precisely, it demonstrated improved 
performance, attaining an AP score of 81.28% for intact 
or undamaged buildings and 69.26% for collapsed 
structures. Considering the computational cost of the 
models, the best-performing model (Experiment 4) 
required the longest training time of 32 hours and 50 
minutes. The model was trained for more than twice the 
duration of the other models experimented with, owing 
to the extended training epoch. 
 

Table 2. Performance comparison of Mask R-CNN 
models trained with different hyperparameters 

 Average Precision (AP) (%) 

Experiment Intact Collapsed Training Time 

1 80.28 66.61 14 h 2 m 

2 79.45 59.24 14 h 45 m 

3 74.49 53.72 15 h 35 m 

4 81.28 69.26 32 h 50 m 

 
After the training and validation process of the Mask 

R-CNN model, total loss graphs were generated. It was 
evident from the loss curves of the most effective Mask 
R-CNN model that both the training and validation curves 

exhibited a decreasing trend as the number of epochs 
increased, reaching their minimum values without 
overfitting by the end of the process (Figure 4). 

 

 
Figure 4. Training and validation loss curves for the 
Mask R-CNN model 
 

To investigate the transferability of Mask R-CNN 
combined with best-performing hyperparameters, it was 
used for the detection and mapping of intact and 
collapsed buildings on the independent WorldView-3 
image, which covers different part of the Islahiye district 
of Gaziantep province (Figure 5). It was observed that the 
model was able to accurately distinguish collapsed and 
intact buildings. However, due to the limited number of 
collapsed building samples in the training dataset, the 
model was more robust in identifying and locating intact 
buildings. Besides, detection errors were observed in 
collapses due to the viewing angle of the nadir satellite 
images when the roof of the building did not collapse but 
the floor collapsed. 
 
5. Conclusion  
 

DL-based algorithms have shown great potential to 
automatically detect damaged buildings after natural 
disasters using remotely sensed imagery. In this study, 
the DL-based Mask R-CNN model was utilized for the 
identification of collapsed buildings from post-disaster 
remotely sensed imagery. To meet the objective of the 
study, a building detection dataset was created using 
WorldView-3 imagery acquired one day after the 
February 6, 2023, Kahramanmaraş earthquake. Then, the 
Mask R-CNN model was trained and validated with the 
created dataset using different hyperparameter 
combinations. Experimental results revealed that Mask 
R-CNN combined with the ResNet-50 backbone and 
trained with two batch sizes for 200 epochs produced the 
most accurate results (AP=81.28% for intact buildings, 
AP=69.26% for collapsed buildings). These results 
highlighted that the Mask R-CNN model could be an 
effective solution for detecting and mapping collapsed 
buildings, which is particularly important for post-
earthquake operations. It contributes to the accurate and 
rapid evaluation of collapsed buildings during 
emergency rescue operations. However, it should be 
noted that the main limitation of this study may be 
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attributed to the lack of a high-quality large dataset. To 
be more specific, the unbalanced instances of collapsed 
and intact buildings, the constrained spatial resolution, 
and the use of a single image source were critical issues 
that influenced the accuracy and generalization ability of 
the DL model. Given these requirements, the use of an 
expanded dataset would significantly increase the 
accuracy and transferability of the study. From this 
perspective, future research endeavors could emphasize 
generating a superior building dataset and enhancing the 
resilience of DL algorithms. 
 

 
(a) 

 
(b) 

Figure 5. Test result, (a) WorldView-3 image of the test 
site (b) collapsed (red) and intact (blue) buildings 
detected by the model 
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