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 Network construction is an acceptable approach for better understanding the behavior of 
complex system which can be used to reveal the pattern of collective dynamics for realizing 
physical interactions in the dynamical system. In this case, characterizing functional 
connectivity of complex networks for studying a broad class of natural and artificial systems 
from the measures of correlation and causality is of utmost importance to correctly unravel 
physical phenomena of the system. Many network reconstruction approaches are based on 
heuristically thresholding the correlation matrices resulting from pairwise correlation 
analysis according to experimental methods. Other approaches compare the observed 
correlations against null models in the statistical analyses, obtaining results which are 
statistically more robust. Different methods were used, including cross-correlation (CC), 
spectral coherence (SpeCoh), mutual information (MI), transfer entropy (TE), Spearman's 
rank correlation (SC) and convergent cross-mapping (CCM). The methods were applied to 
linear and nonlinear collective dynamics by autoregressive moving average (ARMA) and 
Logistic map (LOG) models, respectively. The dynamics of interconnected units was simulated 
from different complex topologies widely observed in empirical systems with well-known 
network models. The methods of MI and CCM were chosen after examining on the artificial 
cases consisting of desirable features of the real-world systems.  

 
 
 
 

1. Introduction  

Complex networks are widely used in many fields 
throughout the biological, social, information, 
engineering, and physical sciences to improve our 
understanding of collective dynamics and function of 
complex natural and artificial systems evolving in time 
(Albert and Barabási, 2002; Newman, 2003; Boccaletti et 
al. 2006).  

The networks uncover the system's underlying 
interaction patterns where a detailed description of 
dynamics and structure may be impossible due to 
complex or chaotic behavior. The interconnection 
between the elements of a real-world complex system 
should be determined to consider the nature of ongoing 
interaction. Hence, the intrinsic connectivity between the 
components needs to be characterized before we can 
understand the system, and usually this is done by 

mapping physical (e.g., anatomical) connections onto a 
network. The effect of that connectivity is frequently 
investigated by employing the concept of complex 
networks. 

The broad applicability of networks and their success 
in providing insights into the structure and function of 
both natural and human-made systems have thus 
produced considerable excitement across myriad 
scientific disciplines. For example, transportation 
networks with airline routes,  road and rail networks 
(Sen et al. 2003; Gastner and Newman 2004; Li et al. 
2015); disease containment strategies based on cellular 
networks data (Lima et al. 2015); characterizing 
interactions in online social networks (Omodei et al. 
2015); understanding the spatio-temporal evolution of 
an epidemics and infer migration patterns (De Domenico 
et al. 2013 and Matamalas et al. 2016); organization and 
functioning of the human’s brain (Reis et al. 2014; De 
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Domenico et al. 2016); good description of protein-
genetic interactions (Jeong et al. 2001; Carmi et al. 2006; 
De Domenico et al. 2015); the modeling of complex 
climate system (Naghipour et al. 2021 and 2022); 
analysis of groundwater level (Naghipour et al. 2023). 

The quantitative study of networks is fundamental for 
the characterization of complex systems. Importantly, 
several features arise in a diverse variety of networks. 
For example, many networks constructed from empirical 
data-sets exhibit heavy-tailed degree distributions, the 
small-world property, and/or modular structures; such 
structural features can have important implications for 
information diffusion, robustness against component 
failure, and many other considerations.  

In this study, we will propose a new statistical 
approach trying to overcome the problems and improve 
the present understanding of the Earth’s climate system 
and its predictability. This work can also be considered 
as a comprehensive study for the application of 
convergent cross-mapping (CCM) method and the 
evaluation of common methods. Our approach is based 
on a combination of dynamical systems techniques and 
statistical analysis. Finally, we show how surrogate 
models can partially reproduce the nonlinear dynamics. 

  
2. Methodology 

 

In this section, we briefly review the statistical 
methods most widely adopted for reconstructing the 
network structure from the observation of collective 
dynamics. While all the methods differ in the type of 
correlation, similarity or causality they estimate between 
two stochastic processes, say X(t) and Y(t), the 
subsequent steps are the same: i) calculate the same 
measure for any pair of signals corresponding to the 
activity in two different nodes; ii) perform a statistical 
comparison against a null model and, accordingly, iii) 
keep only the links which reject the null hypothesis of 
statistically uncorrelated dynamics (see Figure 1). 

In the following, a brief description of our procedure 
is presented by considering two widely used linear 
correlation statistics, namely Cross-Correlation (CC) and 
Spectral Coherence (SpeCoh), two widely used 
information-theoretic correlation measures, namely 
Mutual Information (MI) and Transfer Entropy (TE), one 
non-parametric similarity measure, namely Spearman's 
rank Correlation (SC).  

In the next section, we will briefly discuss one method 
based on the reconstruction of the underlying phase 
space, namely Convergent Cross-Mapping (CCM), that is 
widely used to infer causal relationships between two 
observed dynamics. 

According to Figure 1, (a) We generate synthetic 
network models and correlated dynamics. (b) Methods 
for inferring correlation, similarity or causality 
relationships between nodes are used to reconstruct the 
network connectivity, by performing hypothesis testing 
for each pairwise interaction. The null hypothesis is that 
the observed time series are not statistically correlated. 
(c) The inferred network connectivity is compared 
against the ground truth and statistical descriptors such 
as accuracy, negative predictive value, specificity and 
balanced accuracy are estimated to validate the goodness 

of the reconstruction (see the study by Naghipour et al. 
(2021) and (2022) for detailed information). 
 

 
Figure 1. Schematic representation of the procedure 
used for reconstructing the network connectivity from 
the analysis of observed collective dynamics.  
 
3. Results  

 
In this work, we simulate 100 independent 

realizations of different network models -- namely with 
modular structure (Stochastic Block Model, SBM), scale-
free (Barabási-Albert, BA), and small-world (Watts-
Strogatz, WS) topology -- for increasing system's size 
(N=32,64, 128, 256) and time course length (M=64, 128, 
256, 512, 1024). This setup allows one to understand the 
impact on connectivity reconstruction of network size, 
time series length, as well as the interplay between 
topology and dynamics. Reconstruction is performed 
according to the statistical approach previously 
described and for different correlation measures. The 
significance level chosen for each analysis in the 
following is 95%, compatible with a choice of 20 
surrogates obtained by using randomly reshuffled series, 
the null model being the lack of correlation and causality 
between any pair of dynamics. 

In Figure 2, a realization of the Barabási-Albert model, 
used as ground truth, and networks reconstructed from 
the observation of linear dynamics with shock 
propagation. The size of the system is N=32 and the 
length of temporal measurements is M=64. (B--G) 
Networks reconstructed with different methods. For 
each method, three cases are considered: forward 
dynamics only (1), backward dynamics only (2), and the 
multiplex network approach obtained from combing 
forward and backward dynamics (3).  

We show in Figure 2 a single realization of a Barabási 
-Albert network, used as ground truth, simulate linear 
dynamics with shock propagation and show the resulting 
reconstructed networks. Once again, all reconstruction 
techniques described so far are used for forward-only 
collective dynamics (FOR) and dynamics with time 
reversal (INT). Methods like cross-correlation and 
Spearman's rank correlation lead to networks denser 
than the ground truth, explaining the excess of spurious 
connectivity observed in previous analyses. Conversely, 
convergent cross mapping and mutual information lead 
to networks as sparse as the ground truth, especially the 
latter. However, mutual information has the undesirable 
feature to infer edges where they are missing (i.e., high 
false negative rate), a problem only partially affecting 
convergent cross-mapping. 
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Figure 2.  (A) A realization of the Barabási-Albert model 
with linear dynamics (B--G) Networks reconstructed 
with different methods, namely (B) cross-correlation, (C) 
Spearman's rank correlation, (D) spectral coherence, (E) 
convergent cross mapping, (F) transfer entropy and (G) 
mutual information.  
 

 
Figure 3.  A representation of reconstructed networks 
and ground truth together with accompanying adjacency 
matrices.  

 
In Figure 3, topology of the networks follows 

Lancichinetti-Fortunato-Radicchi model with the 
simulations from the nonlinearly coupled units with the 
Logistic map, and one of the network realizations is used 
as ground truth (gray edges). Inferred connectivity’s are 
represented the reconstructed networks by the selected 
methods from the analysis presented in Figure 3, namely 
mutual information (MI) and convergent cross mapping 
(CCM) with the encoded colors as the previous figures. 

The dark colors indicate links on the corresponding 
adjacency matrices of the reconstructed networks. As 
another representative example, we show in Figure 3, a 
single realization of Lancichinetti-Fortunato-Radicchi 
network model, used as ground truth, simulate nonlinear 
collective dynamics and show the resulting 
reconstructed networks from the selected methods. Once 
again, selected reconstruction techniques as satisfied 
methods, are used, including mutual information and 
convergent cross mapping. Mutual information leads to 
networks denser than the ground truth, explaining the 
excess of spurious connectivity observed in previous 
analyses with more community detection (not shown in 
the figure). Convergent cross mapping also leads to 
networks denser than the ground truth, with less 
community detection which is desirable in comparison to 
the reconstructed network by mutual information. 
However, mutual information and convergent cross 
mapping have the unpleasant feature to infer edges 
where they are missing (i.e., high false negative rate), the 
problem of detecting true communities less affecting 
convergent cross mapping. 
 

4. Conclusion  
 

We demonstrate the principles of our approach with 
simple model examples, including BA, WS and SBM, to 
assess the strengths and weaknesses of the methods by 
varying system sizes and length of the time-series with 
performing a robust statistical analysis. The results show 
that the performance of CCM method is better to model 
time-series of the deterministic dynamical systems and 
MI models the stochastic series with high accuracy. In all 
statistical measures, the ARMA series has less error in 
compared with the LOG series. In fact, it has been shown 
that the analysis of collective dynamics might lead to very 
accurate (or inaccurate) reconstructions depending on 
the inference approach. However, convergent cross 
mapping appears to be the most robust, in terms of 
statistical reconstruction, to the unknown interplay 
between the structure of an interconnected system and 
the dynamics of its sites. 
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