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 Buildings are a fundamental component of the built environment, and accurate information 
regarding their size, location, and distribution is vital for various purposes. The ever-
increasing capabilities of unmanned aerial vehicles (UAVs) have sparked an interest in 
exploring various techniques to delineate buildings from the very high-resolution images 
obtained from UAVs. However, UAV images have limited spectral information, and VIs have 
been adopted to increase the spectral strength of UAVs for building classification. This study 
aims to assess the contribution of four VIs, the green leaf index (GLI), red-green-blue 
vegetation index (RGBVI), visual atmospherically resistant index (VARI), and triangular 
greenness index (TGI), in improving building classification using geographic object-based 
image analysis (GeoBIA) approach and random forest classifier. For this purpose, five datasets 
were created and comprised of the RGB-UAV image and the RGB VIs. The experimental result 
indicated that the RGB + VARI dataset had the best improvement in the building classification 
based on four evaluation metrics: overall accuracy (0. 9799), precision (0. 9806), recall (0. 
9806), and F1-score (0. 9806). The combination of all the VIs with the RGB image, on the other 
hand, attained results lower than the standalone RGB image: accuracy (0. 9507), precision (0. 
9570), recall (0. 9368), and F1-score (0. 9468). 

 
 
 
 

1. Introduction  
 

Among the myriad of urban features, buildings 
represent a fundamental component (Schlosser et al., 
2020), and obtaining accurate and detailed information 
on buildings is crucial for urban planning, infrastructure 
development, disaster management, and other 
applications (Hu et al., 2021). Recent advancements in 
unmanned aerial vehicle (UAV) technologies and the 
sophistication of imaging sensor systems have sparked 
an interest in exploring various methods to delineate 
building objects from very high-resolution (VHR) UAV 
imagery.  

One such method is geographic object-based image 
analysis (GeoBIA), which has emerged as a powerful 
approach for automating the extraction of objects from 
remote sensing data (Comert & Kaplan, 2018). GeoBIA 
integrates machine learning algorithms, spatial 
information, and spectral characteristics to segment and 
classify image objects, making it particularly suited for 
building extraction (Aminipouri et al., 2009; Guo & Du, 
2017). 

While GeoBIA has shown considerable promise in 
building classification and segmentation, the spectral 
limitations of UAV-RGB imagery pose a challenge, 
especially when distinguishing between building 
materials and other urban (Li et al., 2022). Researchers 
have since used various ancillary datasets, such as 
vegetative indices (VI), to address this drawback in the 
classification process. VIs can capture subtle spectral 
variations and, when combined with GeoBIA’s spatial 
context analysis, offer a promising avenue for improving 
building classification and segmentation urban (Öztürk & 
Colkesen, 2021; Schlosser et al., 2020). 

Although some research works have focused on 
improving building classification using RGB VIs, a 
comprehensive comparison of the effect of each VI on 
classification accuracy has not been conducted. 
Consequently, the primary objective of this study is to 
investigate the impacts of integrating RGB-based VIs into 
the GeoBIA classification pipeline for building extraction. 
To achieve this objective, four well-established VIs: the 
green leaf index (GLI), red-green-blue vegetation index 
(RGBVI), visual atmospherically resistant index (VARI), 
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and triangular greenness index (TGI) were employed and 
combined with UAV-RGB imagery. The efficacy of each 
amalgamation was assessed using key performance 
metrics such as overall accuracy (OA), F-1 score, and 
Kappa coefficient. 

 

2. Method 
 

The methodological framework adopted for this 
research is presented in the subsequent subsections.  

 

2.1. Study Area 
 

The New Mankessim community is within the 
administrative jurisdiction of the Tarkwa Nsuaem 
Municipal Assembly, located approximately 19.30 
kilometres southwest of the municipal capital, Tarkwa, in 
the Western Region of Ghana. Geographically, the 
community is positioned at latitude 5°5’ 29.45” N and 
longitude 2°6’ 4.70” W, nestled at an average altitude of 
55 meters above mean sea level. A resettlement program 
initiated by one of the prominent mining companies 
operating in the region, primarily to accommodate the 
evolving dynamics of mining activities in the area, led to 
the relocation of community members from previous 
dwellings to the current location. As such, a notable 
feature of the New Mankessim community is the 
uniformity in architectural designs across the settlement. 
The community’s well-planned layout is marked by a 
consistent architectural style, reflecting a cohesive and 
deliberate approach to urban development. Fig. 1 depicts 
the UAV Image of the study area. 

 

Figure 1. UAV Image of New Mankessim 
 

2.2.  Geographic Object-Based Image Analysis 
(GeoBIA) 

 

GEOBIA is an image analysis approach commonly 
applied to VHR remote sensing data. It serves various 
purposes, including land-cover mapping and identifying 
specific geographic objects like buildings, cars, and trees 
(Kucharczyk et al., 2020). The workflow of the GeoBIA 
approach involved image segmentation, feature 
selection, image classification, and accuracy assessment 
and was carried out using the Google Earth Engine 
platform.  

2.3 Image Segmentation 
 

This step involved segmenting images into image 
objects, groups of neighbouring pixels representing 
objects within the drone image based on spectral and 
spatial attributes. There are various methods for 
performing image segmentation. However, the simple 
linear iterative clustering (SLIC) algorithm (Achanta et 
al., 2012) was utilised. SLIC is a seed-based clustering 
technique that effectively utilises a modified k-means 
clustering strategy to create superpixels with high 
efficiency. In contrast to prior methodologies, SLIC excels 
in preserving boundaries while offering improved speed 
and memory efficiency (Liao et al., 2022). 

It also enhances segmentation performance and can 
be extended for super voxel generation. This method 
carefully incorporates considerations of both color 
homogeneity and shape uniformity, achieving a well-
balanced trade-off between these aspects (Zhang & Zhu, 
2019). Utilising SLIC requires defining several 
parameters, such as compactness, seed size, and grid 
type, to obtain optimum and homogenous image objects. 
For this work, the parameters were determined using a 
trial-and-error method. 
 

2.4 Feature Selection  
 

The spectral attributes, including the mean values of 
the red, green, and blue (RGB) bands and VIs within each 
image object, were selected as the primary features for 
building extraction. These features capture colour 
information for distinguishing building objects from 
other urban features. In total, 916 samples were selected, 
456 representing buildings and the remaining non-
building objects. These were divided into training (80%) 
and validation (20%) sets. 
 

2.5 Classification  
 

The step involves using a machine learning classifier 
to classify the segments into respective classes. For this 
research, the random forest (RF) classifier proposed by 
Breiman (2001) was employed to classify the selected 
features as either buildings or non-buildings. RF is an 
ensemble machine learning algorithm that combines 
multiple decision trees to make predictions. Each tree in 
the forest is trained on a different subset of the data with 
bootstrapping and random feature selection. The final 
prediction is determined by a majority vote or averaging 
of individual tree predictions, making it robust, accurate, 
and less prone to overfitting, making it robust and 
effective in handling complex classification tasks (Kumar 
& Sinha, 2020; Xiao et al., 2020). For this research, the RF 
classifier was trained using the selected samples, with 
the mean values serving as input features. Like the image 
segmentation step, RF also has several parameters that 
need to be fine-tuned for optimum classification, which 
were defined using a trial-and-error approach.  
 
2.6 Evaluation Metrics 
 

A comprehensive validation approach is adopted to 
assess the accuracy of the building classification. The 
trained RF classifier is applied to the validation data to 
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classify buildings and non-buildings. The results are 
compared with ground truth data to evaluate 
classification performance using overall accuracy, 
precision, recall, and F1-score, which were computed 
using a confusion matrix—equations (1) to (4) give the 
mathematical formulations for the evaluation metrics. 

 

Recall, R = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (1) 

 

Precision, P = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

 

Overall Accuracy, OA  = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (3) 

 

F1-score, F1 = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 

 

Where TP represents correctly identified building 
pixels, TN indicates correctly identified non-building 
pixels, FP represents pixels erroneously classified as 
buildings but are not, and FN denotes pixels overlooked 
as non-building despite being so. 
 

2.7 RGB-Vegetative Indices 
 

Vegetation indices (VIs) are derived through 
mathematical equations applied to two or more spectral 
bands to highlight specific vegetation attributes (Öztürk 
& Colkesen, 2021). Several VIs that utilise the RGB bands 
have been created and developed. The RGB VIs utilised in 
this research are depicted in Fig. 2, and the formulae are 
in Table 1. 

 

 
Figure 2. RGB VIs (a)GLI, (b)RGBVI, (c)VARI, and (d)TGI 

 

Table 1. RGB-VIs Utilised 
VI  Formula Reference 

Green Leaf 
Index 

 GLI = 
(2 ×𝐺𝑟𝑒𝑒𝑛)−𝑅𝑒𝑑−𝐵𝑙𝑢𝑒

(2×𝐺𝑟𝑒𝑒𝑛)+𝑅𝑒𝑑+𝐵𝑙𝑢𝑒
 

Hunt et al. 
(2012) 

Red-Green-Blue 
Vegetation 
Index 

 RGBVI = 
𝐺𝑟𝑒𝑒𝑛2−𝐵𝑙𝑢𝑒 ×𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛2+𝐵𝑙𝑢𝑒 ×𝑅𝑒𝑑
 

Bendig et 
al. (2015) 

Visual 
Atmospherically 
Resistant Index 

 VARI = 
𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑−𝐵𝑙𝑢𝑒

𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑+𝐵𝑙𝑢𝑒
 

Gitelson et 
al. (2002) 

Triangular 
Greenness 
Index 

 TGI = 𝐺𝑟𝑒𝑒𝑛 −
(0.39 × 𝑅𝑒𝑑) +
(0.61 × 𝐵𝑙𝑢𝑒) 

Louhaichi 
et al. 
(2001) 

3. Results  
 

For this study, five datasets were created by 
combining the RGB VIs with the UAV-RGB image. These 
were RGB and GLI, RGB and RGBVI, RGB and VARI, RGB 
and TGI, and RGB and all indices. Spectral and spatial 
information were subsequently selected from each 
combination and used to train and validate the RF 
classifier. The evaluation results obtained for each 
combination, based on the evaluation metrics, are 
provided in Table 2.  

 

Table 2. Performance of Various Dataset Combinations 

Dataset 
Metric 

OA P R F1 
UAV-RGB 
only 

0.9565 0.9643 0.9529 0.9586 

RGB + 
GLI 

0.9632 0.9897 0.9411 0.9648 

RGB 
+RGBVI 

0.9660 0.9671 0.9671 0.9671 

RGB + 
VARI 

0.9799 0.9806 0.9806 0.9806 

RGB + 
TGI 

0.9714 0.9880 0.9535 0.9704 

RGB + All 
Indices 

0.9507 0.9570 0.9368 0.9468 

 

Fig.3. illustrates the extraction results produced by 
the random forest classifier for each dataset 
combination. 
 

 
Figure 3. Building Extraction Results RF Classifier (a) 
UAV Image, (b) RGB + GLI, (c) RGB + RGBVI, (d) RGB + 
VARI, (e) RGB + TGI, and (f) RGB + All Indices 
 

4. Discussion 
 

The results presented in Table 2 show that the RGB 
VIs had a significant impact on the building extraction 
task. All the evaluation metrics were generally improved 
when the VIs were added to the RGB-UAV image. Notably, 
the RGB + VARI dataset achieved the highest OA at 
0.9799, highest recall at 0.9806, and highest F1 at 0.9806, 
indicating that the VARI index contributed significantly 
to accurate building extraction, was influential in 
capturing most building features and exhibited a strong 
balance between precision and recall. For precision, 
however, the RGB + GLI dataset attained the highest 
precision at 0.9897, indicating minimal false positives. 
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Surprisingly, combining all available indices, i.e., the RGB 
+ All Indices dataset, resulted in a lower OA and F1 score 
than some individual index combinations. The thematic 
maps show that the similar visual outputs were produced 
by the datasets. Regardless, it is observed that the RGB + 
VARI dataset had few false positives compared to the 
others.  

 

5. Conclusion  
 

This study aimed to assess the contribution of four 
RGB VIs, GLI, RGBVI, VARI, and TGI, in improving building 
classification tasks from UAV imagery. To that aim, four 
datasets containing a combination of these VIs and RGB-
UAV were created, and a GeoBIA approach was adopted 
to classify building features from these datasets. In 
addition, a fifth dataset was created by combining all the 
RGB VIs and the UAV image. The experimental results 

highlight the advantages of integrating vegetative indices 
into building extraction from UAV-RGB imagery. The RGB 
+ VARI dataset emerged as the top-performing 
combination, achieving the highest overall accuracy, 
precision, recall, and F1-score levels. However, it is worth 
noting that the RGB + GLI dataset stood out for its 
exceptional precision, rendering it particularly suitable 
for applications where minimizing false positives is 
paramount. However, combining all the RGB VIs with the 
RGB image produced lower metric scores than the 
standalone RGB image.  

The consistent performance of RGB + VARI across 
various metrics accentuates its effectiveness as a 
standalone index.  
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