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 Accurate forecasting of PM10 concentrations is crucial for air quality management and public 
health protection. This study proposes a deep learning-based model for predicting PM10 
concentrations in Istanbul, Türkiye, utilizing a combination of Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) models. Historical air pollution data from the 
Ministry of Environment, Urbanization, and Climate Change of Turkey and meteorological 
data from NASA for the period of January 2018 to August 2023 were employed for model 
development. Ümraniye district was selected as the study area due to its comprehensive air 
quality data availability. An extensive model development process involved identifying the 
optimal input sliding window, input features, and model architecture through parameter 
tuning. The LSTM+GRU model resulted in the best metrics, achieving an RMSE of 6.71, R2 of 
0.86, and MAPE of 15.9%. The model demonstrated strong generalization capabilities when 
tested on data from eight different stations in Istanbul. While the proposed model exhibited 
promising performance, certain limitations warrant further investigation. The effectiveness of 
the model for air pollutants other than PM10 remains unexplored. Additionally, an evaluation 
of feature importance ranking for the input parameters is necessary to identify the most 
influential factors contributing to PM10 concentrations. Future research endeavors will 
address these limitations and refine the model for broader applicability. 

 
 

1. Introduction 
 
Air pollution, especially PM10 and PM2.5, is a major 

health and environmental hazard. PM air pollution 
causes cardiovascular and respiratory diseases, 
according to numerous studies. (Anderson et al., 2011; 
Liang et al., 2014). In addition, there are a number of 
important environmental effects of air pollution, such as 
the greenhouse effect, acid rain, ozone layer alterations, 
decreased visibility, and lower-quality products. 
(Lehadus et al., 2019).It is widely regarded as a primary 
concern for the environment and public health on a 
global scale.  It is considered one of the main problems 
for the environment and public health globally 
(Estuardo-Moreno et al., 2022). Particulate matter also 
impacts climate and precipitation, making it a crucial 
issue associated with air pollution (Kamarehie et al., 
2017). 

Understanding the effects of PM10 and PM2.5 on the 
environment and public health is essential for developing 
effective strategies to mitigate air pollution and protect 
human well-being. 

1.1 Machine Learning & Deep Learning Prediction 
Models 
 

Machine learning and deep learning methods have 
become effective tools for predicting air pollutants 
because they can comprehend intricate connections 
among many components and provide precise forecasts.   
Machine learning methods such as Extreme-Gradient 
Boosting (XGBoost), Random Forest (RF), and Deep 
Neural Networks (DNNs) have effectively been utilized 
for PM10  prediction RF has been used to estimate daily 
concentrations of pollutants in Sweden (Stafoggia et al., 
2020), while XGBoost has been applied to assess the role 
of atmospheric circulation in PM10 in urban areas with 
complex topography (Sekula et al., 2022) DNNs have 
demonstrated their effectiveness in comprehensive air-
quality index prediction, incorporating multiple 
variables and factors (Kim et al., 2022). These machine 
learning and deep learning models offer promising 
solutions for air quality monitoring and forecasting, 
enabling timely interventions and mitigating the adverse 
health and environmental impacts of air pollution. 
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1.2 Long-Short Term Memory (LSTM)  
 

LSTM (Long Short-Term Memory) recurrent neural 
network (RNN) architecture overcomes typical RNNs' 
shortcomings in learning long-term dependencies 
(Kratzert et al., 2018). Since 1995, it has been employed 
in natural language processing, time series forecasting, 
and trajectory prediction (Dai & Li, 2019; Greff et al., 
2017). 

Due to its ability to capture and store data across 
lengthy sequences, LSTM is useful for processing and 
predicting. Gates and memory cells control network 
information flow (Gers et al., 2000). Each LSTM memory 
cell has input, forget, and output gates. These gates 
control information flow into, out of, and within each 
memory cell, allowing the network to recall or forget 
information at specific time steps. (Gers et al., 2000). 

Studies show that LSTM is an effective and accurate 
PM10 prediction model. W. Li & Jiang (2023) suggested a 
TCN-BiLSTM-DMAttention model with strong prediction 
accuracy and generalization performance to help prevent 
air pollution. Istiana et al. (2022) evaluate deep learning 
applications, notably LSTM, for PM2.5 concentration 
prediction, emphasizing their efficiency and cost-
effectiveness. 

 

1.3 Gated Recurrent Unit (GRU) 
 

Recurrent neural networks (RNNs) like the Gated 
Recurrent Unit (GRU) capture dependencies and 
patterns in sequential input. It has gating techniques to 
keep long-term dependencies and solve the vanishing 
gradient problem in traditional RNNs. Reset and update 
gates allow the GRU model to adaptively acquire and 
interpret sequential information, making it ideal for time 
series data and sequential modeling. The GRU model has 
been used to predict PM10 and PM2.5 air pollution in 
several studies. Dairi et al. (2021) used deep learning 
models using RNN, LSTM, and GRU architectures to 
forecast air quality using the AirNet dataset, which 
comprises meteorological time series and air quality 
data. Qing et al. (2019) suggested a deep learning-based 
short-term PM2.5 concentration forecasting model using 
convolutional-based bidirectional gated recurrent unit 
(CBGRU) neural networks and 1D convents. Yang et al. 
(2020) also evaluated CNN—LSTM and CNN—GRU with 
different stand-alone PM concentration prediction 
algorithms in Seoul. 

 
2. Method 
 

This study tests the performance of both LSTM & GRU 
deep learning models on PM10 concentrations 
forecasting concentrations. The LSTM model, inspired by 
the human brain, processes and learns sequential data 
well, making it suited for modeling air pollution data's 
temporal patterns and correlations. The study's 
methodology includes data collecting, preprocessing, 
model construction, and evaluation. 

 

2.1 Study area & Data collection 
 

Istanbul, a heavily populated megacity on the 
European and Asian continents, is a vital air pollution 

forecast research hub. For air quality assessments, 
Istanbul's comprehensive air pollution monitoring 
station network provides valuable data. Air pollution 
from heavy traffic, industrial activities, and high 
population density makes the city a good air quality 
research site. Istanbul map with metrological and air 
quality stations is in Figure 1. 

Figure 1. Air pollution stations across Istanbul. 
 
Ümraniye district was chosen for model training 

because it had the most consistent PM10 data. Hourly 
time series data of air quality for 38 stations in Istanbul 
from January 2018 to August 2023 was obtained from 
the Ministry of Environment, Urbanization and Climate 
Change of Turkey (SIM, 2023). Eight air pollutants were 
monitored: PM10, PM2.5, SO2, CO, NO, NOX, NO2, and O3. 
However, subsequent inspection revealed that not all 
stations measured all contaminants.  

Meteorological data was obtained from NASA's 
MERRA2 satellite data using its Earth Science research 
program. The following abbreviations were used to 
denote wind speed at 10 m, wind direction, surface 
pressure, specific humidity, and temperature at 2 m: 
WS10M, WD10M, PS, QV2M, and T2M. (NASA, 2023). 
 

2.2 Data preprocessing 
 

After exploring the data, missing values and outliers 
were detected thus data cleaning and missing data 
imputation were done in the following steps. Figure 2 
shows the missing data for PM10 in white areas. 

 

Figure 2. PM10 Data availability. 
 
Imputation of missing values follows outlier 

removal.  Outliers were identified using the Python ADTK 
library's InterQuartileRangeAD detector (Arundo, 2023). 
This detector utilizes historical data to compare time 
series values with the 1st and 3rd quartiles.   Anomalous 
data points are identified when their differences exceed 
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the product of the interquartile range (IQR) and a user-
defined factor c.   

The data was standardized using StandardScaler 
after outlier elimination. After that, "Fancyimpute" 
(Rubinsteyn & Feldman, 2016) was used to fill in the 
missing data. Before modeling, the dataset was split into 
60% training, 20% validation, and 20% testing sets. 

 

2.3 Model development 
 

A variety of LSTM and GRU model architectures 
were trained and evaluated then the best-performing 
model was selected based on evaluation metrics. The 
study utilizes five criteria to evaluate the models' 
predictive performance and ascertain the effectiveness 
of the suggested strategy.   

Sliding window inputs were made which is a 
common technique used in time series analysis and is 
often used in conjunction with LSTMs. The sliding 
window technique involves splitting a time series into 
smaller windows of fixed length and using these 
windows as input to a model. Many trials were done until 
the best window size was selected. 

Prior to training, it is necessary to normalize the 
dataset. Applying data normalization can enhance the 
efficiency of deep learning models and enhance their 
resilience to fluctuations in the input data.  

The model development was conducted in three 
steps, which involved determining the optimal input size 
by utilizing all input features. Then choose input features 
alternatively. Finally, adjusting the number of hidden 
layers and neurons in the model architecture until 
optimal results are achieved. 

 
Table 1. Parameters used during model development. 

 
  

 
It’s worth noting that usage of other outlier 

detectors or other station’s data for modeling may yield  

The assessment measures employed include Root 
Mean Square Error (RMSE), Mean Square Error (MSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE), and Coefficient of Determination (R2). 
Figure 3 illustrates the sequence of steps followed in our 
study.  The parameters that were examined to determine 
the optimal combination are illustrated in Table 1.  
 
3. Results & Discussion 

 
Experimental trials were done to get the lowest MSE 

& RMSE by changing the combination of parameters used 
for model training.  Table 2 shows some of the trials and 
their respective evaluation metrics.  

As mentioned in the model development section, the 
first step is finding the best input window size, and trials 
showed that 10 hours of input data performed best. 
Using metrological data and (NO) pollutants improved 
feature selection predictions.  

Finally, choosing the model architecture, hidden 
layers, and neurons. After testing, one-layer LSTM and 
one-layer GRU with 32 neurons in each layer produced 
the most accurate prediction model with an RMSE of 6.71 
and R2 of 0.86. Figure 4 shows PM10 predictions vs. 
actual PM10 values.  

 

 
Figure 4. Predicted PM10 vs. Actual concentrations. 
 

The best model generalization ability was tested on 
other stations and the results is shown in table 2. 
Although the model would predict more accurately if 
PM2.5 data were used. But using PM2.5 data would limit 
our model’s usability on other stations. Since not all 
stations have data for PM2.5 it was not added for our 
model. 
 
 

 
better results and that can be performed on later 
research. 

Figure 3. PM10 prediction workflow. 
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Table 3. Model’s PM10 prediction performance on other 
stations. 

 
4. Conclusion 

 

This study constructed a deep-learning model 
utilizing LSTM and GRU deep-learning algorithms to 
estimate PM10 concentrations on an hourly basis.  

Compared to earlier models, the LSTM+GRU model 
has demonstrated great predictive capabilities across all 
the models that have been built.   In addition, the model 
that was created was tested on data from eight distinct 
areas and showed strong generalization abilities.  

Nevertheless, this study has specific constraints.   
The efficacy of the suggested model has not been 
investigated for air pollutants other than PM10.     
Moreover, there has been no assessment of the ordering 
of the input parameters in terms of their relevance.   
Subsequent investigations will focus on overcoming 
these constraints.  
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Features input window
Model 

Architecture

Hidden 

units
RMSE MSE MAE MAPE R2

Metrological data 10 BatchNorm, LSTM,LSTM,BatchNorm,Dense,32,32 7.67 58.89 5.15 20.16 0.82

Metrological data + NO 10 BatchNorm, LSTM,LSTM,BatchNorm,Dense,32,32 7.25 52.61 4.79 17.6 0.84

Metrological data + NO 10 LSTM,LSTM 32,32 6.73 45.34 4.35 16.58 0.86

Metrological data + NO 10 LSTM 32 6.84 46.72 4.34 15.66 0.86

Metrological data + NO 10 LSTM,LSTM,LSTM,LSTM16,16,16,16 6.92 47.95 4.51 17.69 0.85

Metrological data + NO 10 GRU 32 6.88 47.31 4.54 17.45 0.85

Metrological data + NO 20 LSTM,LSTM 32,32 6.77 45.78 4.33 15.71 0.86

Metrological data + NO 30 GRU,GRU 32,32 6.93 48.03 4.42 16.02 0.85

Metrological data + NO 10 GRU,GRU,GRU 32,32,32 6.86 47.07 4.43 16.81 0.85

Metrological data + NO 10 GRU,LSTM 32,32 6.88 47.37 4.35 15.79 0.85

Metrological data + NO 10 LSTM,LSTM 32,32 6.97 48.53 4.58 17.96 0.85

Metrological data + NO 10 LSTM,GRU 32,32 6.71 45.06 4.31 15.89 0.86

Table 2. PM10 prediction trials with different parameter combination. 
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