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 The ionosphere has some temporal regular changes under the dominant control of the Sun. 
The stationary structure of the ionospheric time series (e.g. TEC, foF2) allows it to be modeled 
on a specific time. In this study, we tested the performance of the artificial intelligent (AI) 
techniques e.g. a machine learning-based method, autoregressive integrated moving average 
(ARIMA), and a deep learning-based method, long short-term memory (LSTM) network to the 
prediction of Total Electron Content (TEC) values. The TEC data of six different locations in 
low, middle, and high latitudes were selected from the Center for Orbit Determination in 
Europe – Global Ionosphere Maps (CODE-GIMs). To show the performance of the proposed 
methods during quiet space weather and a severe geomagnetic storm, we trained the 60 days 
TEC data (24 data points in one day) and forecasted the TEC data of the subsequent five days 
by fitted models with optimal hyperparameters. The forecasted TEC values were compared 
with observed TEC through some statistical metrics (RMS, MAE). The results indicated that 
the LSTM is more successful in TEC prediction than ARIMA. This study brings new insights 
into the AI techniques in the ionospheric TEC prediction. 

 
1. INTRODUCTION  

 

The ionosphere is a three-dimensional dispersive 
medium atmosphere layer whose primary driver is the 
Sun. The layer locates above approximately 50-1000 km 
from the Earth's surface and includes molecules with 
potential for photoionization. When molecules are 
exposed to light energy emitted from the Sun, their 
components are divided into atoms, which are negative 
electrons and positive ions. Negatively charged electrons 
affect the propagation of electromagnetic signals 
traveling between the earth and space.  

The number of free electrons is described by the 
Total Electron Content (TEC) parameter. The TEC 
describes the number of free electrons in a cylinder with 
a 1 m2 base area throughout the line-of-sight (LOS). The 
unit of the TEC (TECU) is equal to 1016 electron/m2. TEC 
values have periodic temporal and spatial variations 
such as the diurnal, 27-day, seasonal, semi-annual, 
annual, and 11-year under control of the Sun (Vaishnav 
et al., 2019). 

The TEC also increase/decrease due to space 
weather events such as solar winds, solar flares, 
geomagnetic storms (Bagiya et al., 2009), earthquakes 
(Şentürk et al., 2019), tsunamis (Occhipinti et al., 2013), 
volcanic eruptions (Dautermann et al., 2009), 

hurricanes/typhoons (Chen et al., 2020) and 
anthropogenic events (Lin et al., 2017). These events 
generally cause non-secular changes and affect the 
regular change of TEC variation. 

There are some traditional time series analysis 
methods to modeling the TEC time series, but these 
methods are not adequate to simulation the previous TEC 
observation and the pattern that is far away from 
forecasting-initial-point, as any artificial intelligence (AI) 
algorithms. However, AI method such as ARIMA and 
LSTM learns the trend, seasonality, and residuals 
patterns in the TEC time series and successfully 
forecasting TEC values for a short period. Some AI-based 
methods were previously utilized to forecast ionospheric 
parameters (McKinnell and Poole, 2004; Athieno et al., 
2017; Sai Gowtam and Tulasi Ram, 2017; Srivani et al., 
2019; Kaselimi et al., 2020; Ruwali et al., 2020). 

In this study, we discussed the advantages and 
disadvantages of the ARIMA and LSTM methods for 
ionospheric TEC forecasting. For this purpose, TEC data 
of CODE-GIMs were obtained in low, middle, and high 
latitudes of the hemispheres during quiet space weather 
and geomagnetic storm. The forecasting performance of 
the methods was compared using some statistical 
metrics. 
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2. METHOD 
 

We have fitted two models to forecast TEC values; 
the ARIMA and LSTM. The ARIMA is a statistical, 
traditional, machine learning approach while LSTM is a 
more advanced version of a special kind of Artificial 
Neural Network (ANN) named Recurrent Neural 
Network (RNN). We split our analysis into three 
divisions: (1) data collection and pre-processing, (2) 
formulation of the models, and (3) implementations 
which are the following: 

 
2.1. Data Collection and Pre-processing  
 

The TEC time series of 750N-S (high latitude), 450N-
S (middle latitude), and 150N-S (low latitude) at prime 
meridian were obtained from GIMs produced by the 
CODE. These GIMs are gridded between ±87.50 N-S and 
±1800 W-E with a 2.50x50 spatial resolution, respectively, 
and with a 1-hour temporal resolution. The gridded TEC 
values are published by files in the Ionosphere Map 
Exchange Format (IONEX), which is freely available in 
ftp://cddis.gsfc.nasa.gov/gps/products/ionex/. 

We selected the TEC data at a two-time interval for 
quiet space weather (from February 27 to May 01, 2020) 
and a geomagnetic storm (from June 28 to August 31, 
2018). The geomagnetic storm is identified by the 
disturbance storm-time (Dst) index which decreased to -
174 nT on August 26, 2018. This Dst value indicates a 
severe geomagnetic storm. Also, the quiet space weather 
period is decided by threshold values of Dst > -20 nT, 
solar radio flux (F10.7) < 90 sfu. The indices are available 
at https://omniweb.gsfc.nasa.gov/form/dx1.html. 

 
2.2. Model formulation 
 
2.2.1. Autoregressive Integrated Moving Average 
(ARIMA) 
 

ARIMA is a time series model based on traditional 
statistical concepts and integration of two methods: Auto 
Regression (AR), and Moving Average (MA). 

An ARIMA model can be defined as three 
parameters: (1) p is the number of autoregressive terms, 
(2) d is the number of nonseasonal differences needed 
for stationarity, and (3) q is the number of moving 
averages. 

Jenkins and Box proposed a method to get the order 
of ARIMA using the autocorrelation function (ACF) and 
the partial autocorrelation function (PACF) of the sample 
data (Bartholomew, 2020). The parameters, q calculates 
using ACF plot and p obtains from the PACF plot. 

We can formulate ARIMA (p, d, q) as follows: 
𝑌𝑡 = 𝛿 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + 𝛼3𝑌𝑡−3 +⋯+ 𝛼𝑝𝑌𝑡−𝑝 +

𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − 𝜃3𝜀𝑡−3 −⋯− 𝜃𝑞𝜀𝑡−𝑞  (1) 

where 𝛿 is a constant, 𝑌𝑡  is linear combinations of the 
previous time-series terms with the coefficients  
𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑝 and 𝜀𝑡 is a random shock at time t. 

 
2.2.2. Long Short Term Memory (LSTM) Network 
 

Time series is a very special type of data in which 
dependent and independent variables are the same, and 

the target attribute depends on its previous observations 
rather than on the independent variables. 

TEC variation has the same daily min-max values 
with little erratum but this erratum becomes high during 
any special events (e.g. magnetic storms, solar activity, or 
earthquakes). Traditional ANN is advanced enough to 
capture and learn the irregularity in the TEC data and 
forecast upcoming value but being a time series data it is 
highly correlated with the previous terms. So, RNN is 
used to pass previous learning to the adjacent nodes. 
Although RNN predicts well, it does not have any 
memory power to keep within whatever it has learned 
from the nodes that are far away from the current node. 
This problem is also known as a vanishing gradient 
problem. LSTM comes into existence to overcome the 
problem of the vanishing gradient. The special 
architectures of the LSTM-RNN network (Fig. 1) made it 
possible to keep those learning within the network and 
forecast based on these learning. 

LSTM networks have four components: Cell State, 
Input Gate, Forget Gate, and Output Gate (Fig.1b). 

 
(a) 

 
(b) 

Figure 1. The architecture of LSTM. (a) The complete 
connected architecture of LSTM-RNN, (b) One-single-
node representation of LSTM-RNN. 
 

2.3. Implementations 
 

We have split our dataset into two-part; training 
dataset and test dataset. The training data for quiet space 
weather include 60 days from Feb 27 to Apr 26, 2020, 
and test data includes the subsequent 5 days between 
Apr 27 and May 1, 2020. Also, the training data for 
geomagnetic storm includes 60 days from Jun 28 to Aug 
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26, 2018, and test data includes 5 days on Aug 27-31, 
2018. 

ARIMA and LSTM models were implemented in the 
MATLAB R2019b using Econometrics and Deep Learning 
Toolboxes. 

Two statistical metrics employed to evaluate the 
performance of the proposed models; Maximum 
Absolute Error (MAE) and Root Mean Square (RMS) 
error. 

 
MAE = max(|TECForecast − TECObserved|)  (2) 

RMS = √
1

n
∑ (TECForecast-TECObserved)2n

i=1   (3) 

 

3. RESULTS  
 

In this section, we showed our ARIMA and LSTM 
results only at 150 N and 450 S for both quiet space 
weather and geomagnetic storm, respectively. 

 
 
Figure 2. (a) TEC time series at 150 N, (b) Dst index, (c) 
F10.7 index from Feb 27 to May 1, 2020. The gray and 
cyan lines indicate training and test data, respectively. 
 

Figure 3. (a-c) Observed TEC at 150 N and Forecast TEC 
calculated by ARIMA and LSTM methods (b-d) Errors 
from Apr 27 to May 1, 2020. 
 

In Fig. 2, we showed the time series of TEC, Dst, and 
F10.7 for the quiet space weather period. The Dst values 
range between -59 nT and 20 nT and F10.7 values range 
between 67.4-71.5 sfu. These values indicate quiet space 

weather for ionospheric variation except for Apr 20, 
2020. A moderate geomagnetic storm (Dst < -50 nT 
between 11-13 UT) occurred on the relevant day. 

In Fig. 3, we showed the observed TEC, forecast TEC, 
and RMS errors of proposed methods for the quiet space 
weather period. We forecasted TEC values with an 
accuracy of 2.24 and 1.43 TECU for ARIMA and LSTM 
methods, respectively. 

 
 
Figure 4. (a) TEC time series at 450 S, (b) Dst index, (c) 
F10.7 index from Jun 28 to Aug 31, 2018. The gray and 
cyan lines indicate training and test data, respectively. 
 

Figure 5. (a-c) Observed TEC at 450 S and Forecast TEC 
calculated by proposed methods (b-d) Errors from Aug 
27 to Aug 31, 2020. 
 

In Fig. 4, we showed the time series of TEC, Dst, and 
F10.7 for the geomagnetic storm period. The Dst values 
range between -174 nT and 21 nT and F10.7 values range 
between 67.9-75.8 sfu. The F10.7 values indicate quiet 
space weather for ionospheric variation in training data 
but the Dst value of -174 nT indicates a severe 
geomagnetic storm on August 26, 2018 (in test data). 

In Fig. 5, we showed the observed TEC, forecast TEC, 
and RMS errors of proposed methods for the 
geomagnetic storm period. We forecasted TEC values 
with an accuracy of 1.00 and 0.86 TECU for ARIMA and 
LSTM methods, respectively. 

We also showed the RMS and MAE values of 
proposed methods for other locations in Table 1. 
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Table 1. RMS and MAE values (in TECU) of proposed methods for quiet space weather and geomagnetic storm 

Locations 
Quiet Space Weather Geomagnetic Storm 

ARIMA LSTM ARIMA LSTM 
RMS MAE  RMS  MAE  RMS  MAE  RMS  MAE 

750 N 0.61 1.25 0.88 2.95 0.96 2.95 0.95 2.60 
450 N 1.28 2.67 1.05 3.15 1.12 2.56 1.13 2.66 
150 N 2.24 6.22 1.43 4.66 3.77 11.24 2.90 9.42 
150 S 2.28 5.56 1.46 4.03 2.48 5.46 2.76 9.34 
450 S 1.71 6.60 0.80 2.57 1.00 2.30 0.86 3.23 
750 S 0.85 1.88 0.83 1.84 1.29 3.41 1.38 3.79 

 
4. CONCLUSION  
 

In this study, the TEC data of six different locations 
were used to analyze the prediction performance of 
ARIMA and LSTM methods in different locations and 
space weather conditions. 

We showed that both ARIMA and LSTM are 
successful for forecasting ionospheric TEC, but LSTM is 
more accurate than the ARIMA model. While LSTM 
produced better results especially in the low and middle 
latitudes, there was no significant difference between 
both methods in the high latitudes. Also, both methods 
generally predicted TEC values with lower RMS in the 
quiet space weather period than the geomagnetic storm 
period. 

In the study, we have seen the capabilities and 
abilities of the AI-based models in forecasting the TEC 
time series. We showed that deep learning methods 
provide more accurate forecasting TEC data. 
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