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 Since ionospheric variability changes dramatically before the major earthquakes (EQs), the 
detection of ionospheric anomalies to EQ forecasts has become a new trend in the current era. 
Therefore, there is a call to identify highly accurate, advance, and intelligent models to identify 
these anomalies. In this study, we have proposed a deep learning-based method, long short-
term memory (LSTM) network, to detect ionospheric anomalies using the Total Electron 
Content (TEC) time series of Awaran, Pakistan (Mw=7.7) EQ on September 24, 2013. We have 
taken 45 days of TEC data with a 2-h temporal resolution and train the models with an 
accuracy of 0.07 TECU. After fitted models with optimal hyperparameters, we have applied 
both to forecast TEC values for one week before the EQ. The anomalies, high differences 
(crossing the threshold value) between forecasted and observed TEC, are an indication of 
abnormal activities, e.g. earthquake, space weather, etc. In this study, we detected anomalies 
for the Awaran EQ. We conclude our results with the identification of ionospheric anomalies 
that occurred before the EQ results showed that strong positive anomalies are recorded 3 days 
before (on Sep 21) the EQ. These anomalies are thought to be related to Awaran EQ due to the 
quiet space weather conditions on the anomalies days. This study brings new insights into the 
AI techniques in seismoionospheric EQ forecasting. 

 

1. INTRODUCTION  
 

Earthquakes are the most destructive natural 
hazards, which may claim a huge number of human lives 
along with huge economic losses for any country 
(Athukorala and Resosudarmo, 2005). If we become 
able to found any single clue or prior knowledge about 
the upcoming EQ, then we will be able to save many 
lives and escape from capital losses by using 
precautions. Researchers are working hard to find any 
prior signal of major EQs and forecasting EQs have 
become a hot topic among geologists, astronomers, 
geophysicists, etc. Many studies have been already 
conducting to show a correlation among anomalies 
occur in the ionosphere just a few days before EQs 
(Hattori et al., 2014). However, all of them are based on 
some statistical analysis or just a complex mathematical 
model. Artificial Intelligence (AI) can bring 
revolutionary changes in this field of forecasting EQs 
based on ionospheric anomalies.  

Nowadays, earthquake warning has taken a new 
turn of prediction when some anomalies are detected in 

the ionosphere ahead of the major EQ (Hattori et al., 
2014). Many researchers have elaborated on different 
theories and proofs to get the reason behind this 
correlation. For example, Klimenko et al. 2011, has 
introduced a mechanism behind the effectuation of 
ionospheric perturbation due to the electric field that 
originates from high internal gravity waves. Rozhnoi et 
al. 2007, has study the lithosphere-ionosphere high 
coupling by the gravity waves and presented case 
studies of three major EQs (M>7) which happened in 
November, 2004 in Japan. Pulinets 2009, has 
acknowledged another reason for ground and 
atmosphere coupling is a potential difference between 
them. However, any physical reason behind this 
coupling did not approve yet.  So, we have only way to 
understand such theory is that conduct statistical 
analysis of TEC values before major EQs and that is why 
much statistical analysis have previously been proposed 
for different EQs e.g. in Guo et al. 2015, investigates TEC 
anomalies respond to the EQ (M=8.2) of 1 April, 2014 in 
Chile. Ouzounov et al. 2011, analyzed the ionospheric 
perturbation that occurred before the Tohoku EQ (M=9) 
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happened on 11 March, 2011 in Japan, and 
Akhoondzadeh et al. 2010, investigate four EQs (M>6) 
using GPS data and found positive results of coupling. 
Liu et al. 2013 have successfully concluded about the 
lithosphere-ionosphere coupling from all these 
investigations and it has also revealed that major 
anomalies detected 1-4 days before major EQs. Now, 
when it is so clear that TEC perturbations reveal several 
days before any EQ, it can play an important role as a 
significant feature in EQs forecasting. 

Past decades were emerging for AI, machine 
learning, sensing techniques, Internet of Things (IoT) 
and have been applied for multiple fields of seismology 
e.g. EQ magnitude prediction (Adeli and Panakkat, 
2009), seismic signal acceleration classification 
(Andreadis et al., 2007), EQ detection (Beyreuther and 
Wassermann, 2008), seismic arrival prediction 
(Beyreuther and Wassermann, 2008). Furthermore, Li 
et al, 2018 have been shown that the EQ data can be to 
distinguish EQ and non-EQ based on P-wave and S-wave 
arrival times using ML. Another study has presented a 
generative adversarial network (GAN) an automatic 
feature extractor and trained a Random Forest classifier 
with about 700,000 EQ and noise waveforms which can 
recognize 99.2% of the EQ P waves and 98.4% of the 
noise signals (Li et al. 2018). That is why taking TEC 
values as an important feature for a strong forecast 
about an EQ becomes crucial and many more already 
started like in a study (Akhoondzadeh, 2013) used 
Genetic Algorithm (GA) to predict TEC values before the 
Solomon EQ (M=8) and investigated that if the 
difference between forecasted and observed value, 
exceeds the pre-defined threshold value, then it could 
be EQ anomaly. In the same way, we also processed our 
research but using a different approach. In our study, 
we have taken LSTM, a Recurrent Neural Network 
(RNN), deep learning method to time series analysis of 
TEC values so that we can get an idea about TEC values 
in normal days. After forecasting TEC, we used these 
values as an estimator for anomalies detector.    
 
2. MODELING AND EVALUATION 

 
2.1. Data Description and Preprocessing 
 

We have selected the strong (Mw=7.7) Awaran EQ 
for the analysis and examine the proposed model. The 
EQ occurred on Sep 24, 2013, 11:29:47 (UTC) and the 
epicenter was 61 km north-north-east (NNE) of Awaran, 
Pakistan (26.951°N 65.501°E). The detail of EQ 
recorded from the National Centers for Environmental 
Information (https://www.ngdc.noaa.gov/hazard/). 
After, finalizing EQ, we fetch the TEC value from the 
same coordinates and time as well. The unit of TEC is 
TECU where 1 TECU is equal to 1016 el/m2.  The 
ionospheric TEC data are provided by the Crustal 
Dynamics Data Information System (CDDIS). CDDIS is 
one of the Earth Observing System Data and 
Information System (EOSDIS) Distributed Active 
Archive Centers (DAACs), part of the NASA Earth 
Science Data and Information System (ESDIS) project. 
Datasets and related data products and services are 
provided by CDDIS, managed by the NASA ESDIS 

project.  The parent directory is available on CDDIS 
NASA (ftp://cddis.nasa.gov/gnss/products/ionex/). 

We have split the data into three parts: 1) the data 
from Aug 1, 2013, to Sep 14, 2013, has chosen for the 
training of the model, 2) data from Sep 14, 2013, to Sep 
19, 2013, has selected for evaluating the accuracy of the 
model, and 3) from Sep 19, 2013, to Sep 26, 2013, are 
the actual data for which has chosen for forecast TEC, 
take the difference and detecting the anomalies. 

The magnetic activity indices Kp, disturbance 
storm-time (Dst), and solar activity indices solar radio 
flux (F10.7), and solar wind speed (VSW), which are 
freely available on the OMNI website 
(https://omniweb.gsfc.nasa.gov/form/dx1.html) were 
also analyzed to reveal the space weather effect on 
ionospheric anomalies. 
 
2.2.  Space-weather conditions before the EQ 
 

We used the Dst, VSW, Kp, and F10.7 space weather 
indices to show the effect of space weather on the TEC 
time series from Sep 19 to Sep 24, 2013. Fig. 1a and 1c 
demonstrate the variations of Dst and Kp magnetic 
activity indices. These indices indicate the quiet 
magnetic activity before the EQ where Dst values range 
between ±20 nT. Kp values are less than 4 except for 
Sep 19 and 24. Figures 1b and 1d present the variations 
of VSW and F10.7 solar activity indices. The VSW values 
indicate a solar wind on Sep 19 and 20, the index values 
vary between 500-600 km/s. F10.7 values are between 
105-115 sfu before the EQ, which indicates low solar 
activity. 
 

 
 
Figure 1. Space weather indices from Sep 19-24, 2013. 
(a) Dst, (b) solar wind speed, (c) Kp index, (d) F10.7 
index values. The vertical blue dash-dotted lines in 
graphs indicate EQ time. 
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2.3. Model Formulation 
 

The proposed model, LSTM, is an extension of RNN 
which overcome the problem of vanishing gradient. The 
special architectures of the LSTM-RNN network (Error! 
Reference source not found.) made it possible to keep 
those learning within the network which is far away 
from the forecast point and predict based on these 
learning. LSTM has various components which can 
forget or store the information using the following 
formulations: 

 

 
Figure 2. Node architecture for LSTM 

 
𝑓𝑡 = 𝜎(𝑤𝑓[𝑂𝑡−1, 𝑋𝑡] + 𝑏𝑓)     (1) 

 
𝑖𝑡 = 𝜎(𝑤𝑖[𝑂𝑡−1, 𝑋𝑡] + 𝑏𝑖)      (2) 
 
𝐶𝑡

~ = 𝑡𝑎𝑛ℎ(𝑤𝑐[𝑂𝑡−1, 𝑋𝑡] + 𝑏𝑐)     (3) 
 
𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡

~        (4) 
 
ℎ𝑡 = 𝜎(𝑤𝑂[𝑂𝑡−1, 𝑋𝑡] + 𝑏𝑂)      (5) 
 
𝑂𝑡 = ℎ𝑡 ∗ tanh(𝐶𝑡)        (6) 
 

Where, Xt is the input vector, 𝑊𝑡 =

[

𝑤𝑓

𝑤𝑖

𝑤𝑐

𝑤𝑜

] weightvector, bias 𝑏𝑡 =

[
 
 
 
𝑏𝑓

𝑏𝑖

𝑏𝑐

𝑏𝑜]
 
 
 
, and output Ot at time 

t. 
 

2.4. Evaluation Criteria 
 

Various metrics employed to evaluate the 
performance of the purposed model; Mean Square Error 
(MSE), Root Mean Square Error (RMSE), Normalized 
Mean Square Error (NMSE), Normalized Root Mean 
Square Error (NRMSE), and Standard Deviation (SD). 
The calculation methods for each are the following: 
 

MSE=
1

n
∑ (TECPredicted-TECActual)

2n
i = 1        (7) 

 

RMSE=√
1

n
∑ (TECPredicted-TECActual)

2n
i = 1        (8) 

 
NMSE= MSE [ max(TECActual) - min(TECActual)]⁄       (9) 
 

NRMSE= 𝑅𝑀𝑆𝐸 [ max(TECActual) -min(TECActual)]⁄    (10) 
 

SD=√
1

n-1
∑ (TECActual-TECActual

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2n

i = 1     (11) 

 
Where, n is the number of observation involves in 

evaluating the model and TECActual
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the value of mean 

for actual TEC observations employed for evaluation. 
 
3. IMPLEMENTATION 
 

To implement the proposed model, code written in 
Python.3 using Keras library, debugged on Jupyter 
Notebook which can be download from the link: 
https://jupyter.org/. Jupyter Notebook is a nonprofit 
organization created to "develop open-source software, 
open-standards, and services for interactive computing 
across dozens of programming languages". We have 
used two hidden layers with 48-48 nodes in each with a 
20% dropout in LSTM. Also, we take batch size 12 
observations (number of the data point in a day) and 
30% data for validation. We have also used Adam 
Optimizer to update the hyperparameters of LSTM and 
MSE for improving accuracy.   

 
4. RESULTS AND DISCUSSIONS 
  

We implemented the model and evaluate using 
evaluation data. We used different matrices for 
evaluating the model which has present in Table 1. The 
RMSE is 3.51 and NRMSE is 0.07 which is good accuracy. 
We forecasted TEC values for one week before the EQ 
which is represented in Figure 3. After forecasting TEC 
for a normal situation, differences between observed 
and forecast TEC calculated, and the error crossing a 
threshold is called anomalies (see Figure 4). In Figure 4, 
the red colour circle shows a strong positive anomaly on 
Sep 21, 2013, which is three days before the EQ.  

 

 
Figure 3. Forecast and observed TEC values 
 

 
Figure 4. Error calculated 
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Table 1 Matrices of the proposed model 

Matrices MSE RMSE NMSE NRMSE SD 

Values 12.34 3.51 0.25 0.07 3.24 

 

5. CONCLUSION  
 

We have implemented an AI-based technique, 
LSTM to forecast ionospheric TEC values. The 
forecasting values gives a deep insight into the future 
estimated TEC values (what it should be during a 
normal day). And, when we become able to forecast 
TEC, we can estimate the significant differences 
between forecasted and observed TEC and 
abnormalities of the data which have been observed 
because of a sudden change in the ionosphere. In our 
case, we detected anomalies three days before the 
Awaran EQ. Such a proposed model can be a new 
method to make an earthquake warning system.  
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