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 Classical outlier tests made classically based on the least-squares (LS) have significant 
disadvantages in some situations. The results of adjustment computation and classical outlier 
tests performed with classical methods are deteriorated when observations are not 
distributed independently and this distribution is not normal. To detect outliers that do not 
have a normal distribution, the robust techniques that are not sensitive to outliers have been 
developed. The least trimmed squares (LTS) known as having a high-breakdown point have 
been dealt with in this study. Adjustment computation has been carried out based on the least-
squares (LS) and the least trimmed squares (LTS). A certain polynomial with arbitrary values 
has been used. In this way, the performances of these techniques have been investigated. 

 

 
 
 

1. INTRODUCTION 
 
Various observations are done in geodesy. Physical 

and geometric quantities, such as angles, distances, 
heights, and gravity are measured and processed. In this 
case, a great number of data appears (Fan 1977). Since 
the accuracy of data is always questioned, it is preferred 
that the number of observations is bigger than the 
number of unknowns. A quantity is always measured 
differently from each other even though it is measured 
many times under the same conditions (Ingram 1911). 
It is clear that observations are never exact, and they 
always contain error, however careful they are 
performed. Thus, an adjustment computation is applied 
to get unique solutions from these redundant 
measurements (Ghilani 2017; Mikhail and Ackermann 
1982). 

 There are a lot of adjustment methods. The least-
squares (LS) is a frequently used method. LS is a sort of 
regression that examines and models the relationship 
between data (usually obtained from observations). It is 
one of the most adopted methods because of its tradition 
and ease of computation (Cizek and Visek 2005; 
Rousseeuw and Leroy 1987). But, it has turned out with 
time that outliers (observations with different 
distribution compared to the distribution of majority) 
affect the LS method negatively. 

Outliers in observations are encountered very often 
in applications (Rousseeuw and Leroy 1987). The 
results of adjustment with classical methods such as LS, 
which should meet some conditions like normal 
distribution are deteriorated. So, these outliers must be 
detected and eliminated from observations. There are 
outliers tests based on classical methods, especially LS. 
These outliers tests can be contaminated. Therefore, 
new statistical methods have been sought instead of LS 
sensitive to outliers. (Yetkin and Berber 2013).  

The robust statistics deals with developing 
estimators insensitive to discrepancies from basic 
assumptions in classical models (Fabozzi et al. 2014). To 
overcome effects of outliers, robust methods aim to find 
results that are closest to adjustment results that would 
be found without outliers. Then, outliers can be detected 
through their residuals. (Rousseeuw and Hubert 2018). 
Many robust techniques have been developed. These 
techniques can be divided into classes with some 
concepts like a high-breakdown point, influence 
function, etc. The least trimmed squares (LTS) is a high-
breakdown point estimator. 

In this study, adjustment computations and outlier 
analysis have been performed according to LS and LTS 
method in different scenarios. Then, the results of LS 
and LTS have been compared with each other. 
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2. METHOD 
 

2.1. Adjustment Computation 
 
When there is the redundant observation in a 

problem, adjustment computation is performed to get 
unique values for the unknowns (Ogundare 2018). 
Adjustment is only meaningful when observations are 
more than the unknown number (Mikhail and 
Ackermann 1976). In this case, the problem is solved 
according to an objective function. For the solution of 
the problem, a mathematical model (model briefly) that 
represents the mathematical relationship of 
observations and unknowns is established (Schaffrin 
2019). The mathematical model accounts for an 
essential part of adjustment computation, and it is 
usually composed of two parts: a functional model and a 
stochastic model. When observations are made, a 
functional model is typically chosen to represent the 
physical situation. The stochastic model determines 
variances and covariances of observations (Ghilani 
2017; Mikhail and Ackermann 1976; Ogundare 2018). In 
the classical Gauss-Markov model, the functional and 
stochastic model can be expressed as below: 

 
𝑣 = 𝐴𝑥 − 𝑙 

𝑃 = 𝑄𝑙𝑙
−1 = 𝜎0

2𝐶𝑙𝑙
−1 

 
where v, A, x, l, P, 𝜎0

2  and Cll are the residual or correction 
vector, the coefficient matrix, unknown vector, the 
observation vector, the weight matrix, a priori variance, 
and the covariance matrix, respectively. 

In this case, both the functional model and the 
stochastic model must be correct if adjustment 
computation is to give real results (Ghilani 2017). After 
a mathematical model is formed, an optimization is 
made according to chosen objective function. 
Optimization means minimization or maximization of 
function (Grafarend and Sanso 2012).   

 
2.2. The Least Squares 

 
The Least Squares (LS) is a method used in 

adjustment computation by minimizing the sum of the 
squared weighted differences to get unique values with 
redundant measurements (Amiri-Simkooei 2003; 
Mikhail and Ackermann 1982; Wells and Krakiwsky 
1971). The objective function of LS can be given the 
following: 

 

𝑣𝑇𝑃𝑣 =∑𝑝𝑖𝑣𝑖
2

𝑛

𝑖=1

→ 𝑚𝑖𝑛 

The main problem of LS is that even one outlier 
might severely affect the LS method (Muhlbauer et al. 
2009). LS can propagate errors in one observation to 
another observation. Therefore, masking and swamping 
effects occur. A bad observation could seem like a good 
one because of the propagation of errors; this is called a 
masking effect. On the contrary, the good observation 
could seem bad; this is called the swamping effect 
(Hekimoglu 2005). As a result, test for outliers like 

Baarda test (Data-snooping, W-test) and Pope test (Tau 
test) based on LS also can be affected negatively. 

 
2.3. Robust Estimation and Determination of 

Outliers 
 
Real data sets frequently contain outliers 

(Rousseeuw 1990). Therefore, methods that cannot be 
affected easily by outliers should be developed. These 
are the methods named as robust methods. Robustness 
usually means insensitivity to outliers (Huber 1981). 

There are many robust methods. L1-norm is the 
oldest method of these robust methods. Then, M-
estimators, R-Estimators, and L-Estimators appeared. 
To compare the robustness of these methods, the 
‘breakdown point’ has been used. The breakdown point 
means the smallest number of outliers, which may affect 
an estimator negatively (Hofmann et al. 2010).  These 
methods above have a low-breakdown point 
(Rousseeuw and Leroy 1987). Because of this, 
generalised M-Estimators was developed. Then, 
Repeated Median, The Least Median Squared (LMS) 
(1984), S-Estimators, MM-Estimators, and The Least 
Trimmed Squares (LTS) were developed respectively 
(Hubert et al. 2008; Staudte and Sheather 2011; Toka 
and Cetin 2011). 

 
2.4. The Least Trimmed Squares 

 
The least trimmed squares (LTS) was developed by 

Rousseeuw. This method is quite similar to LS except 
that the largest squared residuals are removed from the 
data (Knight and Wang 2009).  The objective function of 
LTS can be given the following: 

 

𝑀𝑖𝑛∑𝑃𝑣𝑖
2

ℎ

𝑖=1

 

 
where, h is the number of residuals (or corrections) 
after data removing 

There are different criteria to determine the 
number of residuals in LTS that will be included in the 
sum. The h= n/2 (n, number of observations) should be 
taken for maximum robustness since LTS can give 
satisfactory results until %50 contamination (Cizek 
2005). LTS problem requires dealing with finding the 

minimum one from (𝑛
ℎ
) LS solutions (Hofmann et al. 

2010). 
 
3. RESULTS 

 
In numerical applications, a linear regression 

model such as y=a1x+a2 was used. Regression 
coefficients were taken as 2 and 0.5, respectively. y 
values were calculated according to x values that were 
chosen arbitrarily for 10 observations. In the fırst 
application, both LS and LTS methods were performed 
using x values and y values with random errors. In LTS, 

h was taken as 8 and (10
8
)  solutions were made. Then, 

for the second application, gross errors were added to 
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some y values, and LS and LTS methods were performed 
again. Regression results are shown in Table 1 and Table 
2. Distribution of x and y values and regression lines in 
Application 2 are shown in Figure 1. It was expected that 
LTS could detect precisely y values with gross errors. 

The results of Application 1 have shown that the 
observations (measurements) are typically distributed, 
and they have only random errors. Thus, the results of 
LS and LTS are close to each other (Table 1). But, it is 
shown that the results of LTS are closer to real values 
than LS. In Application 2, it is clear that the products of 
LS are quite contaminated, and the sum of residuals 
squared has increased very much (Table 2). The 
coefficient a2 of LS in Application 2 is quite different 
from expected. Compared to LS in Application 2, the 
results of LTS in Application 2 are more correct, and the 
sum of residuals squared is relatively much smaller. 
 
Table 1. The regression results of Application 1 

Methods a1 a2 [VV] 

LS 2.03 0.37 1.24 

LTS 2.01 0.38 0.15 

 
Table 2. The regression results of Application 2 

Methods a1 a2 [VV] 

LS 2.14 1.76 208.38 

LTS 2.07 0.09 0.96 

 
It can be seen that the outliers have affected the 

results of LS regression in Application 2. Point 6 and, 
which is designed as outliers have drawn LS regression 
line towards themselves. However, LTS regression has 
not been affected by outliers (Figure 1). 

The residuals of LS regression in Application 1 are 
small as expected (Figure 2a). The effects of outliers on 
the residuals for LS in Application 2 can be seen in 
Figure 2b. Also, it is seen that the gross errors added to 
Point 6 and 7 have been distributed to the other points 
in the LS method (Figure 2b).  

LTS regression in Application 2 could determine 
outliers precisely and remove outliers (6 and 7. Points) 
from the observations. Also, LTS regression has not 
distributed outliers effects to the other points (Figure 3). 
 

 
Figure 1. The regression lines of LS and LTS in 
Application 2                            

 
Figure 2. The residuals of LS regression in Application 1 
(a). The residuals of LS regression in Application 2 (b) 
 

 
Figure 3. The residuals of LTS regression in Application 
2 
 
4. DISCUSSION AND CONCLUSION 
 

A linear regression model was used in this study. 
The analysis were performed according to LS and LTS 
method using different scenarios. In the first 
application, points with only random errors were used. 
The LS and LTS methods gave good results. But, LTS had 
a little better results. In the second application where 
contaminated points were used, although LS results 
were affected badly from outliers, LTS results gave 
results close to ones in Application 1. 

As a result, LTS results are as good as LS results 
when observations are normally distributed.  On the 
other hand, LTS can give much better results than LS 
when observations have outliers. Also, the LS method 
can distribute the outlier effect to the other points. 
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