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 In studies in earth sciences such as geodesy and geophysics, it is important to determine the 
gravity field as precisely as possible. In the determination of this field, it is quite common to 
use data sets obtained from satellites as well as terrestrial measurements. Especially, thanks 
to Low Earth Orbits (LEO), research conducted to determine the gravity field of the earth has 
gained speed in recent years. CHAMP (CHAllenging Minisatellite Payload-2000), GRACE 
(Gravity Recovery And Climate Experiment-2002) and GOCE (Gravity field and steady-state 
Ocean Circulation Explorer-2009) satellites are at the top of these satellites, respectively. The 
data collected from these satellites has contributed and continues to contribute to the 
production of many Global Geopotential Models (GGMs). This study aimed to demonstrate the 
performance of the eight Global Geopotential Models published by ICGEM (International 
Centre for Global Earth Models). In this context, the results were evaluated by making a 
numerical comparison between the gravity values obtained from the GGMs and the observed 
gravity data. 

  

 

1. INTRODUCTION  
 
The definition of height can be defined, in the most 

general sense, as the distance between a point on the 
ground and the starting surface. Heights may have 
definitions that are physical and geometric. In general, in 
engineering applications, it is more fitting to use heights 
related to gravity, i.e. physical heights. Determining the 
performance of GGMs produced by many scientists using 
different data sets is still one of the issues that are being 
studied. In addition, many scientists conduct regional 
and global tests in different geographies of the world in 
order to reveal the performances of GGMs and share the 
results with the scientific world. Various methods and 
approaches have been suggested by scientists while 
conducting these tests. For example, one of the most 
common methods used to determine the best GGM for a 
region's gravity field is to compare GGMs using 
independent data sets. These independent datasets are 
GNSS/leveling, gravity, etc. (Doğanalp 2016). 

As gravity force, the sum of centrifugal and gravity 
forces on an object is described. Determining the 
gravitational field of the earth is the same as determining 
its potential. Since this potential is harmonic from earth-
forming masses, spherical harmonic series are typically 
used to determine the field of gravity (Kaula 1966; 

Heiskanen and Moritz 1984; Rummel et al. 2002; Seeber 
2003; Hofmann-Wellenhof and Moritz 2005; Doğanalp 
2016). In this study, gravity values will be calculated with 
Global Geopotential Models (GGMs) and information 
about their sensitivity will be given by comparing with 
observed gravity values. 

 
2. METHOD 

 
GGMs are generally split into three basic classes. 

These are models, satellite-only models, combined 
models and tailored models. In the first models, the 
coefficients of these GGMs are derived from orbit 
deviation analyses of artificial earth satellites. The 
second model is generated by combining satellite 
altimeter data in marine areas, terrestrial gravity 
observations, gravity data derived from satellite data, 
and airborne gravimetry. The last models are produced 
as a result of improving harmonic coefficients of GGMs 
using special mathematical techniques within the first 
and second models (Vaniček and Featherstone 1998; 
Featherstone 2002; Doğanalp 2016). GGMs are described 
in various wavelengths as spherical harmonic 
coefficients representing the gravity field of the earth. 
From satellite orbit deviation analyses, satellite altimeter 
data, gravity gradiometer data, and gravimeter data, 

http://igd.mersin.edu.tr/2020/
https://orcid.org/0000-0001-7229-6355


1st Intercontinental Geoinformation Days (IGD) – 25-26 November 2020 – Mersin, Turkey 

 

  233  

 

these coefficients are obtained. The gravity value is 
obtained by Eq (1). This equation is calculated from 
spherical harmonics. 
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where r, ,  are the spherical geocentric coordinates of 
the computation point: radial distance, co-latitude and 
longitude, respectively, GM  is the gravitational constant 
(G) times  mass (M) of the earth, R is the mean earth’s 
equatorial radius, C𝑛𝑚, S𝑛𝑚 are fully normalized 
geopotential coefficients with degree n and order m, 
P𝑛𝑚fully normalized associated Legendre functions, and 
nmax is the maximum degree of the GGM (Barthelmes 
2013; Turgut 2016).  
 

3. RESULTS  
 

In this study, 2918 data points of gravity used as of 
March 21, 2016, in the Milford, Utah FORGE project were 
used. This data set compared the performance of the 
GGMs produced in recent years with some of the models 
produced in previous years. For detailed information 
about the data set, please see the reference given in the 
references section. The data set consists of latitude and 
longitude (decimal degrees), ellipsoidal height (m), 
gravity observed (mGal), terrain correction of the inner 
zone (mGal), terrain correction of the outer zone (mGal), 
values of the free air anomaly (mGal) and values of the 
complete Bouguer gravity anomaly (mGal). 

 

Table 1. Characteristics of GGMs 

Model Name Year nmax Data References 

AIUB-
CHAMP01S 

2007 70 S(Champ) Prange et al. 2009 

EGM2008 2008 2190 
A,G, 

S(Grace) 
Pavlis et al. 2008 

ITU_GGC16 2016 280 
S(Goce) 
S(Grace) 

Akyilmaz et al. 
2016 

GOCO06s 2019 300 S Kvas et al. 2019 

EIGEN-GRGS. 
RL04.MEAN-
FIELD 

2019 300 S 
Lemoine et al. 

2019 

ITSG-
Grace2018s 

2019 200 S(Grace) 
Mayer-Gürr et al. 

2018 
GO_CONS_GCF_
2_TIM_R6e 

2019 300 
G(Polar) 
S(Goce) 

Zingerle et al. 
2019 

XGM2019e 
_2159 

2019 2190 
A,G,T 

S(GOCO06s) 
Zingerle et al. 

2019 

S: satellite tracking data, G: gravity (ground) data, 
A: satellite altimetry data, T: topography 

 

The gravity values of the 2918 points used in the 
study were obtained separately for the GGMs given in 
Table 1 with the help of the calculation service on the 
International Centre for Global Earth Models (ICGEM) 
website (http://icgem.gfz-potsdam.de/ICGEM). The 
gravity differences obtained from the GGMs are shown in 
Figure 1. For a better understanding of the difference 
values, the difference values were transferred to 
histogram graphics and reinforced with statistical 
information (Figure 2). The statistical information 
obtained as a result of the evaluation of the GGMs is 
presented in Table 2. 
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Figure 1. The gravity differences (unit: mGal) 
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Figure 2. The gravity difference values as a histogram 
(unit: mGal) 

 
Table 2. Statistics of gravity differences (mGal) 

Model Name min max mean std 

AIUB-CHAMP01S -51.189 96.365 -14.513 21.217 

EGM2008 -30.248 70.852 -1.853 9.340 

ITU_GGC16 -53.765 112.650 1.231 21.675 

GOCO06s -55.345 105.621 -6.436 21.450 

EIGEN-GRGS... -53.042 109.037 -0.622 21.606 

ITSG-Grace2018s -53.532 112.304 -4.923 21.547 

GO_CONS…R6e -55.461 105.983 -6.167 21.481 

XGM2019e_2159 -27.940 71.009 -1.667 10.558 

 
4. CONCLUSION  

 
As a result of the calculations, it was seen that the best 
GGMs for this test area were EGM2008 and 
XGM2019e_2159. The standard deviation values were 
obtained 9.340 mGal from the EGM2008 model and 
10.558 mGal from the XGM2019e_2159 model. In other 
GGMs, very close standard deviation values have been 
calculated. For this study, it can be said that one of the 
most important reasons affecting accuracy is the variety 
of data used (altimetry, gravity, and satellites) and a high 
degree (nmax) model.  
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