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 Monitoring structural deformations and taking measures for building safety are considered 
almost synonymous with important concepts such as human health, public safety and 
prevention of economic losses. For this reason, new structural monitoring application 
techniques are being developed in parallel with the developments in building construction 
technologies and architecture. In particular, GNSS satellite-based measurement systems have 
found wide application areas for determining structural oscillations and deformations. In 
addition, the direction of the studies in this field has focused on lower cost and more practical 
measurement systems. One of the alternative measurement devices used for this purpose is 
angle and distance measurements with the classical total station. Total stations, which have 
been automated and gained robotic features in recent years, are easily used in the 
determination of the most critical structural monitoring and deformations with their 
programmable structure. In this study, angle-distance measurements performed with a robotic 
total station at a simultaneous and constant sampling interval for 6 hours were processed and 
analyzed. Coordinate values and position errors were calculated by balancing according to the 
least-squares method for each measuring range. Structural displacement values were 
determined from the coordinate values calculated as a function of time. 
  

 
 
 
 

1. INTRODUCTION  
 

In structural monitoring, electronic theodolites (ET) 
or total stations (TS) are commonly used to calculate the 
time-dependent changes of Cartesian coordinates of 
observation points. These instruments are the most 
basic geodetic measuring instruments used in 
engineering measurements and scientific studies. 
Firstly, with the development of electronic theodolites, 
TSs emerged and later with automatized Robotic total 
stations (RTS), which allow new generation robotic 
measurements, have found a wide area of use (Schofield 
and Breach 2007).  

RTS or Robotic theodolites are a modern version of 
TS. In sampling intervals determined according to the 
features of the program used, RTS can direct itself to the 
target point, make measurements and record. 
Nowadays, by programming RTSs, it has been reached 
the level of observing with a sampling interval of 5-10 
Hz and monitoring moving reflectors. Because of these 
advantages, it is widely used in many surveying and  

 
other engineering projects (Psimoulis and Stiros 2008; 
Psimoulis and Stiros 2011; Moschas et al. 2012; 
Lienarth et al. 2016). In addition to general engineering 
research, it can also be used in more scientific 
experiments to record oscillations with a high frequency 
greater than 1 Hz and small amplitude (a few mm). With 
this capacity, RTS can also be used for monitoring large 
engineering structures under the influence of wind or 
traffic load (Pehlivan 2009). 

In this study; horizontal angle, vertical angle and 
oblique distance measurements were carried out in 
order to model the building movements by using a 
robotic featured total station from the control points 
located at long distances. Post-process and instant data 
were analyzed in order to determine the changes 
(structural deformations) in the positions of the 
monitoring points, and the details in the data analysis 
were examined.  
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2. MEASUREMENTS WITH TOTAL STATION 
 

The RTS sends laser light to the prism mounted on 
the observed structure and can record the horizontal 
distance and the horizontal and zenith angles values 
using the round trip time of the returning light. Each 
observation record can be converted into coordinate 
values and its change over time helps us calculate the 
direction and trace of motion. Under normal 
atmospheric conditions, be making angle measurements 
with 0.5' and distance measurements with 1mm + 1ppm 
accuracy allows us to determine the position with 1mm 
accuracy. Repeated measurements at regular intervals 
defined by a total station with automatic target 
recognition (ATR) system; It automatically performs the 
process of guiding to the target point, measuring and 
recording, as programmed. The speed of this automated 
measurement and recording process is directly 
proportional to the sampling rate of the measurement 
process (Psimoulis and Stiros 2011; Moschas et al. 
2012; Pehlivan et al. 2013) 

 

Distance and angle values from the observation 
point to the points to be measured can be measured 
automatically at certain intervals with RTS. Modern 
RTSs can measure the angle value with 0.5cc. While 
angle measurements in the range of 5-10cc can be 
performed with normal total stations, precise distance 
measurements can be performed with an accuracy of 
0.1 mm and normal distance measurements with an 
accuracy of 1 mm. With this sampling range and 
measurement accuracy, RTS will continue to maintain 
its place as an indispensable measuring instrument in 
many engineering works as well as in many SHM 
(Structural Health Monitoring) works (Pehlivan 2019). 
 

3. DATA PROCESSING STRATEGY IN DETERMINE 
STRUCTURAL DEFORMATIONS  

 

Different data processing strategies can be used 
depending on the expected type of movement in 
structural motion tracking studies. If slow deformation 
is expected at a constant rate, the data can be processed 
in static sessions from a few hours to several days, 
generally assuming no movement during the session. If 
the building movement or deformation in question does 
not pose an imminent threat to the structure or its 
surroundings or people living in the area, this is usually 
done after the procedure (Pehlivan 2009). 

However, if the movement expected from the 
structure is expected to be "sudden deformation" for a 
short period of time and/or "continuous deformation" 
changes over time, the sampling interval should be 
increased accordingly. If the deformation could cause 
the deformed body to fail, a real-time solution is desired 
to detect the deformation as soon as it occurs and 
initiate the warning and evacuation processes. In the 
test study of this work, structural deformations are 
expected to have a slow character. In normal weather 
conditions, while the movement is slow, increasing 
impact loads such as temperature, wind, etc. will cause 
an increasing effect on the building movements. For 
these reasons, it is thought that in monitoring the 
constant and regular motion expected in normal 

atmospheric conditions, performing our observations 
with a few minutes sampling interval of RTS 
measurements will give us the opportunity to capture 
the expected movements. However, over a relatively 
short period of time, it can be preferred as a solution in 
real-time monitoring to detect movements of the 
structure. 

 

3.1. Determining the Coordinates of the Monitored 
Point with the Least Squares Method 

 

The linear-angular intersection method has been 
used in order to determine the accuracy of the 
coordinates to be determined by the angle-distance 
measurements performed with the total station to the 
Observation Point (Prism P) and to benefit from the 
advantages of the least-squares method (Ehigiator et al. 
2010; Okwuashi et al. 2014). In the test measurements, 
four observations so two distances and two angular 
directions were carried out with the automated total 
station instrument from two fixed station points. With 
an angular-linear intersection, the number of 
observations is greater than the unknown, so the least-
squares method can be used to determine the 
coordinates of the 3rd point (Figure 1.). 

 
Figure 1. Test measurements and the geometry of 
angular-linear intersection. 
 

The weight of all measurements performed was 
assumed to be equal (W = I). Observations were made to 
Prism point with two total stations installed and 
levelled at TS1 and TS2 points. Horizontal and vertical 
angle values and oblique length values were recorded in 
equal time intervals for six hours. Vertical angles and 
oblique length measurements and horizontal distances 
S1 and S2 were calculated. Horizontal angles α1 and α2 
and horizontal distances S1 and S2 measurements were 
obtained as time series for each measurement interval. 
Using these data, the coordinates of the Prism point 
were be determined by observations made from TS1 
and TS2. Balancing of the calculated coordinates will be 
done using the observation equation method. The 
coordinates of the observed Prism point are (Xp, Yp), 
the coordinates of the fixed station points TS1 and TS2 
are (XA, YA) and (XB, YB), respectively. 
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The adjustment will be carried out in this case by 
using the observation equation method. In this 
adjustment model (observational least square), the 
number of equations is equal to the number of 
observations (n=4), each equation contains one 
observation and one or more unknowns. In this case, 
observations are (S1, S2, α1, α2) and unknowns (Xp, Yp). 
The two lengths (S1, S2) of the lines in the horizontal 
projection can be written in a coordinate form as 
follows: 

 

 
           (1) 

 
 
The horizontal angles (α1 and α2) from figure 1 can 

be calculated as follows: 
 

 
          ( 2) 

 
 
Using the coordinates of the points, we can write 

equations 2 as follows: 
 

 

           (3) 

 
 

The four observational equations given in equations 
1 and 3 are nonlinear functions of both parameters and 
observations; they can be processed by the least-
squares adjustment technique. Before starting the 
solution, approximate values of unknown parameters 
are calculated. Approximate values of the coordinates of 
the P point are calculated using the angular intersection 
according to the following formulas (Ehigiator et al., 
2010): 

 

 
            (4) 

 
 
Using these XP and YP values, the approximate values 

of the observation equations (Lo) are calculated. Then 
the misclosure vector (L) is calculated as: 

 

         (5) 
 

We can express the linearized model in matrix form 
as follows: 

 
       (6) 

 

Where, A: The coefficients matrix of parameters, L: 
The misclosure vector, V: The residuals vector. Matrix A 
may be computed by differentiation of the four 

equations with respect to the two unknowns and can be 
written in the form: 

 

                        (7) 

With the Matlab program, the elements of the matrix 
A (aij) can be found by differentiating the four 
observation equations. Then the normal equation 
system using the Matlab program can be solved.  

The positional error at point P can be computed 
using the following equation (Allan 1988): 

 

                     (8) 

 
Where; b: Base line (the distance between total 

stations) (b=AB in fig. 1); mαcc: Mean square error of 
measuring horizontal angles (taken from specifications 
of the using total stations); ρcc=206265, γ: The 
horizontal angle at point P. 

In order to accept the observations of the point P 
from the triangle ABP and its adjusted coordinates to be 
sufficiently accurate, the coordinates must satisfy the 
following condition (Ashraf 2010). 

 

                         (9) 
 
Where;  
 

 ,   ve   ,  
 

 , : The adjusted coordinates of the point P at 
the time i of measurement; , : The adjusted 

coordinates of the point P at the time k of the 
measurement; Mi, Mk :  The position errors of the point P 
at time i and k (Ashraf 2010). 
 

4. EVALUATION OF EXPERIMENTAL TESTS RESULTS  
 

As seen in Figure 1; From the fixed station points 
(TS1 and TS2), observations were made to the P 
observation point every 2 minutes and the data sets (2 
edges and 2 angle values) were recorded as a function of 
time. Each observation data set was analyzed within 
itself and it was aimed to determine the change of total 
displacement with respect to time by creating 30-
minute observation sets. For this purpose, the balanced 
coordinate values and position errors of the P 
observation point for each half-hour time between 
11:00 and 17:00 were calculated using the MATLAB 
program. And also, the positional errors (Mp) at point P 
was calculated by equation (8) for each adjusting time. 
The position errors for each epoch are approximately 
equal to each other, as they depend on approximately 
the same parameters. The results are presented in Table 
1 below. 
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Table 1. The adjusted coordinates and position errors 
of the observed point 
Time            x             y             Mp 

11:00    914.90597    449.46749    2.4791642 

11:30    914.90584    449.46670    2.4791642 

12:00    914.90571    449.46591    2.4791642 

12:30    914.90545    449.46434    2.4791642 

13:00    914.90532    449.46355    2.4791642 

13:30    914.90507    449.46197    2.4791642 

14.00    914.90480    449.46122    2.4791642 

14:30    914.90467    449.46045    2.4791641 

15:00    914.90391    449.45903    2.4791638 

15:30    914.90433    449.45824    2.4791642 

16:00    914.90421    449.45745    2.4791642 

16:30    914.90395    449.45587    2.4791642 

17:00   914.90382    449.45508    2.4791642 

 
Table 2. The displacement changes of the observed 
point 
Time Δx (mm) Δy (mm) dn (mm) pn (mm) 

11:30 -0.12938 -0.78940 0.80 3.51 

12:00 -0.12938 -0.78940 0.80 3.51 

12:30 -0.25877 -1.57881 1.60 3.51 

13:00 -0.12938 -0.78940 0.80 3.51 

13:30 -0.25876 -1.57881 1.60 3.51 

14.00 -0.26506 -0.74507 0.80 3.51 

14:30 -0.12735 -0.77701 0.79 3.51 

15:00 -0.76594 -1.41306 1.61 3.51 

15:30 0.42666 -0.79438 0.90 3.51 

16:00 -0.12938 -0.78940 0.80 3.51 

16:30 -0.25876 -1.57881 1.60 3.51 

17:00 -0.12938 -0.78940 0.80 3.51 

 
The adjusted coordinates obtained during the 

observation period are presented in Table 1. 
Measurements, which started at 11 o'clock, were 
completed at 17:00, and coordinate values were 
calculated for each 30 minutes. Coordinate differences 
are calculated for each measurement moment in Table 
2. Since the adjusted coordinates of the P point provide 
equation (9), it is accepted as correct. Accordingly, from 
the adjusted coordinate differences, the total 
displacement during the observation period was 
calculated as 1.29 cm in the X-direction. 

 

5. CONCLUSION  
 

Monitoring structures and determining their 
deformation characteristics will provide an important 
prediction for preventing catastrophic events. In 
addition, taking into account the structural features, the 
monitoring period and the most appropriate 
measurement system should be selected and evaluated 
with the most appropriate analysis methods. Because it 
is a known fact that incorrect analysis of measurement 
data prevents some deformations from being noticed. 
The analysis process of the data recorded with RTS also 
requires an accurate deformation analysis. 

For this purposes; Within the scope of this study, 
structural monitoring data was recorded with RTS 
under normal meteorological conditions for 6 hours. 
The coordinate values balanced by the least-squares 
method and their mean errors were calculated and the 
displacement vectors for each measurement instant 
were calculated. As a result of analysis and evaluation; It 
was concluded that the movement of the structure was 
within known and predicted limits and the 
measurements were made with sufficient accuracy. 
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