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 Increased population, global warming, climate change, environmental pollution, agriculture, 
and many other issues make the monitoring of water bodies more and more critical with each 
day. Among the water quality variables to monitor, chlorophyll-a and phycocyanin are very 
crucial, as the former is strongly related to the phytoplankton dynamics, and the latter is an 
indicator of blue-green algae or cyanobacteria. As field trips are tiresome and difficult, satellite 
remote sensing methods have been developed continuously, yet most of the time their 
validation was insufficient since the aforementioned water quality variables may change 
dramatically with time. Hence, this study checked many commonly used algorithms reported 
to work well for chlorophyll-a retrieval with Landsat 8 OLI and an autosampler data which 
measures chlorophyll-a and phycocyanin in every 10 minutes. If not for the chlorophyll-a yet, 
a few band ratio algorithms and B1 and B6 of Landsat 8 OLI produced really promising 
prediction accuracies.  

 

 
 
 
 

1. INTRODUCTION  
 

The general issue in the remote sensing retrieval of 
chlorophyll-a (chla) is that global algorithms perform 
poorly on many different water bodies.  

Tavares et al. (2021) constructed regionalized 
algorithms and reported superior performance over 
global ones, the best one was 2 band semi-analytical 
algorithm with red and near-infrared (NIR) bands of 
Sentinel-2 Multispectral Imager (MSI).  Cui et al. (2020) 
too, considered regionally tuning the general algorithms 
after obtaining optical water type (OWT) and selecting an 
algorithm working best in that OWT for Bohai Sea. Still, 
OC4 algorithm of O’Reilly et al. (1998) was relatively 
successful even before regionalization.  Matsushita et al. 
(2012) and Matsushita et al (2015) also made a similar 
approach, with having Case I and II differentiation in the 
former, and Maximum Chlorophyll Index (MCI) assigned 
category in the latter. Son and Kim (2018) also 
regionalized an algorithm after showing that OC4 was 
not good for their very low chla containing waters and 
generated a power function utilizing 4 bands in the blue-
green region. Similar regionalization is applied by Al 

Shehhi et al. (2017) to account for the turbid atmosphere 
(i.e. dusty) of Arabia, and a power fit was obtained. 

Moreover, there were uncountable study that 
developing/tuning new band algorithms, a few examples 
are Zhao et al. (2015), Huang et al. (2014), and Zhou et al. 
(2014). Among them, for instance, Rodríguez-López et al. 
(2020) checked many simple indices for Lake Laja chla 
retrieval, where chla concentrations were quite low, and 
found that combined use of normalized difference 
vegetation index (NDVI) and Green normalized 
difference vegetation index (GNDVI) yields very high 
correlation coefficient. For phycocyanin, Isenstein et al. 
(2020) used Landsat 7 ETM+ models for many groups of 
phytoplankton, and a model with R2 of 0.83 was 
constructed against the square root of cyanobacteria 
volume in unit water volume.  

One very common shortcoming of algorithm testing 
studies similar to above is the time difference between in 
situ sampling and satellite overpass. Chla, for instance, 
can vary in the order of minutes, but many studies 
worked with even a 2-day time difference. This study 
employs one dataset from Beaverdam Reservoir, 
Virginia, US with chla, phycocyanin, which are quite 
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important for aquatic environments monitoring in 10-
minute interval measurements. Owing to the relative 
smallness of the reservoir, it is impossible to retrieve 
anything with MODIS or Sentinel-3 satellites, but 
Landsat-8 OLI has sufficient spatial resolution. Landsat 8 
OLI’s bands and band ratio algorithms’ predictive power 
for these variables are tested with almost simultaneous 
satellite match-ups to in situ data in this study. 
 

2. METHOD 
 

This section presents information about the study 
area, used in situ and satellite remote sensing data and 
the methods of the study. 

 

2.1. Study Area 

 

 
Figure 1. Location of the Beaverdam Reservoir (Google, 
n.d.) 

 
Beaverdam Reservoir is situated roughly between 

37.31 and 37.32 North latitudes, and -79.81 to -79.82 
east longitudes. It is a secondary drinking water source 
for Roanoke, Virginia.  
 

2.2.  in situ Data 
 

The part of the data matching up with the Landsat-8 
OLI cloudless overpass was obtained from Carey et al. 
(2021). They collected in situ data via autosamplers that 
measure the water every 10 minutes. The chla, 
phycocyanin measurements were obtained via YSI EXO2 
sonde. The mean, standard deviation, and range of these 
variables are in Table 1. 

 
Table 1. Summary statistics of chlorophyll-a (chla) and 
phycocyanin (bga) data used in this study 

Items Mean Standard Deviation Range 

chla(µg/L) 5.51 3.29 11.46 
bga(µg/L) 0.27 0.16 0.49 

 
2.3. Remote Sensing Data 

 

Landsat 8 Operational Land Imager (OLI) top-of-
atmosphere (TOA) reflectance (Chander et al. 2009) data 
were obtained via Google Earth Engine (Gorelick et al. 
2017). (The atmospherically corrected data was not 
included in this study, as atmospheric correction itself 
heavily influences chla retrievals, and there might be 

algorithms that can still function well with TOA remote 
sensing data).  9 images of Landsat 8 OLI without clouds 
or other interferences were found within the period of in 
situ data presence. All images had Visible to NIR and 
short-wave infrared (SWIR) bands; B1,2,3,4 for coastal, 
blue, green, and red, respectively, then B5 as NIR, B6, and 
B7 as SWIR, B8 for the panchromatic band, B9 for cirrus 
detection, B10, and B11 for thermal bands (not used 
here). For the matched pixels, the correlogram between 
these bands is in Fig. 2.  

 

 
Figure 2. Correlogram of Landsat 8 OLI bands in this 
study’s dataset 

 

2.4. Methods 
 

To check whether commonly applied band-ratio or 
other similar algorithms hold for high-frequency data 
match-ups as well, 10 widely used chla retrieval 
algorithms were chosen and presented in Table 2. (some 
of them mostly used for terrestrial purposes, but still 
retrieved chla).  

 
Table 2. The indices used in retrieving chlorophyll-a 
(chla), and phycocyanin 

Index Structure Reference 
NDVI (N-R)/(N+R) (Rouse et al. 1973) 

GNDVI (N-G)/(N+G) (Gitelson et al. 1996) 

ARVI 
(N-(R-(R-B)))/(N+(R-

(R-B))) 
(Kaufman & Tanre, 

1992) 
VARI (G-R)/(G+R-B) (Cheng et l. 2013) 

VI 
Green 

(G-R)/(G+R) (Cheng et l. 2013) 

GCI (N/G)-1 (Gitelson et al. 2006) 
NAVI 1-(Red/NIR) (Carmona et al. 2015) 
GDVI NIR - Green (Sripada et al. 2006) 

EVI 
2.5*((N-R)/(N+(6*R)-

(7.5*B)+1) 
(Huete et al. 2002) 

NRVI ((R/N)-1)/((R/N)+1) (Baret & Guyot, 1991) 

Note: R stands for Red, G stands for Green, B stands for 
Blue, N stands for Near Infrared. 
Note: ARVI index is used with coefficient of (R-B) as 1 

 

The indices’ performances were evaluated via R2 
adjusted values and Residual Standard Errors of the 
fitted linear models. As the dataset is very small yet, no 
training/test separation was done. All operations were 
done in R statistical environment (R Core Team, 2020).  

 

3. RESULTS  
 

Attempts to predict chla by indices failed. The 
following Table 3 shows relatively successful 
phycocyanin predictions. 
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Table 3. Performances of algorithms in retrieving 
phycocyanin concentration 

Index Adj R2 / RE for bga* 
NDVI (-)** 0.6081 / 0.1007 
GNDVI (-) 0.5564 / 0.1071 
ARVI (-) 0.5126 / 0.1123 
VARI (-) -0.09475 / 0.1683 
VI Green (-) -0.06856 / 0.1663 
GCI (-) 0.5 / 0.1137 
NAVI (-) 0.6301 / 0.09783 
GDVI (-) 0.4877 / 0.1151 
EVI (-) 0.5446 / 0.1085 
NRVI 0.6081 / 0.1007 

Note: *Adj R2 stands for adjusted R2, RE is residual 
standard error, bga is the phycocyanin concentration 
Note: **(-) means that there is an inverse correlation 
 
Table 4. Phycocyanin/chla ratio prediction performance 

Index Adj R2 / RE for bgatochla* 
NDVI (-)** 0.3599 / 0.04354 
GNDVI (-) 0.3715 / 0.04314 
ARVI (-) 0.3122 / 0.04513 
VARI (-) -0.07602 / 0.05645 
VI Green -0.0718 / 0.05634 
GCI (-) 0.297 / 0.04563 
NAVI (-) 0.4405 / 0.0407 
GDVI (-) 0.606 / 0.03416 
EVI (-) 0.5324 / 0.03721 
NRVI 0.3599 / 0.04354 

Note: *Adj R2 stands for adjusted R2, RE is residual 
standard error, bgatochla is the ratio of phycocyanin to 
chla 
Note: **(-) means that there is an inverse correlation 
 

4. DISCUSSION 
 

Even though chla was not successfully predicted in 
any algorithms, if one can modestly predict phycocyanin, 
and also the ratio of the phycocyanin to chla, it might be 
better than directly applying bands or indices to predict 
chla itself. Additionally, almost never used B1 coastal 
band predicts phycocyanin/chla with 0.5936 adjusted R2 
and 0.03469 residual standard error, and B6 shows 
similarly good performance of 0.5974 adjusted R2 and 
0.1021 residual standard error for phycocyanin retrieval 
itself (other bands’ performances unreported, as they 
were very poor). Their linear model diagnostics, 
checking for any heteroscedasticity, very influential 
variables, were not bad, especially for the model with B6, 
albeit the good models for phycocyanin/chla ratio had 
influential one or two values. Additionally, as can be seen 
in Fig.2, B1 and B6 are only slightly and negatively 
correlated, so they are likely to carry different 
information. Hence, a new index to retrieve chla might be 
considered with either these B1 and B6 bands or NAVI 
and GDVI indices together with a much larger dataset. 
 

5. CONCLUSION  
 

Effective monitoring of the water bodies will be 
more and more widespread with more robust remote 
sensing retrieval of important water quality variables. 
This paper checked the predictive power of commonly 
used band-ratio algorithms, as well as the bands 
themselves, from Landsat 8 OLI to retrieve chla and 

phycocyanin concentrations from Beaverdam Reservoir 
in Virginia, US where there is a high-frequency sampler 
buoy that might be used to obtain satellite match-up with 
maximum 5 minutes of time lag.  

Even though not for chla, there seem to be quite 
efficient ways to obtain phycocyanin, and also its ratio to 
chla via Landsat 8 OLI TOA reflectance. With an increased 
amount and availability of similar in situ data every day, 
algorithms including Band 1 and Band 6, or NAVI and 
GDVI indices should be developed for better retrieval of 
phycocyanin, which will make the monitor of 
cyanobacteria and its bloom much easier. 
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