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 The stride length estimation is a crucial step used in indoor and outdoor pedestrian 
navigation. The accuracy of the navigation process depends on how accurately the average 
stride length is calculated. The stride length estimation methods use some parameters such as 
step frequency, acceleration, and pedestrian height. These parameters are applied to different 
datasets containing various movements of pedestrians, such as running and walking. 
However, the limited datasets used in academic studies preclude scientific comparability in 
the literature. This study compares ten stride length estimation methods using the open-
source datasets created by Wang and analyzes their accuracy. The case results show that 
Weinberg's approach was quite successful for navigation dynamics. 

 
 
 
 

1. Introduction  
 

In recent years, pedestrian navigation has gained 
popularity with the increase in the population living in 
complex and big cities and constructing substantial 
complex structures with developing engineering 
technologies (Zhang et al. 2018; Walchko 2002). It is 
sufficient for the accuracies to be in the order of 
kilometers for widely used vehicle navigation; the 
accuracy decreases to the level of meters for pedestrian 
navigation (Karimi, 2015). The fact that the designed 
pedestrian navigation applications have accuracy at the 
meter level is crucial for the pedestrians who do not have 
high mapping skills to follow the direction (May, 2003). 
In terms of simplicity and ease of use, virtual reality and 
augmented reality technologies are used in pedestrian 
navigation applications so that pedestrians can find their 
way easier with the help of visual and auditory tools 
(Dias et al., 2015). Global Navigation Satellite Systems 
(GNSS) are sufficient today, outdoors, in open areas to 
ensure enough accuracy. GNSS alone is insufficient in 
indoor or outdoor areas but areas surrounded by trees or 
high-rise buildings. For example, inertial measurement 
unit (IMU) sensors working with GNSS affect the 
accuracy positively (Kim et al., 2004; Kang et al., 2018). 
In addition, algorithms such as Kalman filter, extended 
Kalman filter, artificial intelligence are used in indoor 

pedestrian navigation to increase accuracy (Ladetto et 
al., 2001). 

Pedestrian stride length estimation (SLE) accuracy, 
which is one of the primary stages of pedestrian 
navigation, has critical importance not only in the field of 
navigation but also in many fields such as medicine, the 
military, the study of human behavior, and sports 
(Ladetto et al., 2002; Rampp et al., 2014; Rasouli et al., 
2017; Díez et al., 2018; Zeng et al., 2018). Studies in each 
area need to meet different expectations. In this context, 
there are various studies in which step lengths are for 
pedestrians such as running, fastly, or slowly walking 
(Shin et al., 2007; Martinelli et al., 2017). They use many 
technologies such as cameras, GNSS, IMU, and 
microelectromechanical system (MEMS) sensors in 
smartphones for stride length (SL) calculation (Kang et 
al., 2018; Wang et al., 2019). 

On the other hand, since the datasets used in the 
studies were not open source and were not produced to 
a certain standard in terms of pedestrian behavior, 
technologies, and accuracy, SL calculation methods could 
not be adequately compared and analyzed (Ho et al., 
2016; Xing et al., 2017). Wang et al. (2019) used an open-
source dataset containing different pedestrian behaviors 
(Wang et al., 2019). This study compared the results 
obtained using ten other SL calculation methods. 
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2. Method 
 

2.1. Dataset and data preprocessing 
 

The data collected with the Huawei Mate 9 
smartphone with an octa-core 2.4 GHz processor 
includes sensor data in a 3D accelerometer, gyroscope, 
and magnetometer. The data collection frequency of the 
sensors is 100 Hz. The data includes step number, step 
length, total distance traveled, and time. The pedestrians 
are a total of five people, two women and three men. 
Their weight is between 45-80 kg, their age is between 
23-32, and their height is 152-196 cm. Pedestrians 
carried the smartphone in their right hand at chest level 
with the screen parallel to the ground. Office, shopping 
mall, metro station, underground parking lot, street and 
pedestrian path are used as spaces. Running, walking, 
jumping, and taking the elevator were selected as 
pedestrian behaviors. An average of 122 pieces of data 
was recorded at each step. Less than 200 data was 
recorded in 99% of the steps. 

Before applying the SLE methods, necessary unit 
transformations in the datasets were made. The effect of 
gravitational acceleration on the acceleration data is 
eliminated with the help of the rotation matrix calculated 
by using the accelerometer and magnetometer data 
recorded during the stance phase. The first two steps 
were omitted from all datasets to avoid degradation of 
data quality. One of the 30 datasets in total was excluded 
from the scope of the study due to missing data. As one 
dataset was used as a reference, analyzes of ten methods 
were performed on the remaining 28 datasets. 

 

2.2. Stride length estimation methods and 
experiment 

 

Ten SLE methods were evaluated in this study 
(Table 1). Data such as vertical acceleration, average 
acceleration, constants, and step frequency were used as 
parameters in the methods. The methods were 
implemented using Matlab 2020b software, where 
matrix calculations such as transformation matrix can be 
written quickly.  

In the software, the time values given in the epoch 
are expressed in seconds to be compatible with the 
acceleration data. One of the datasets was selected, and 
the first data, including the pedestrian stance phase, was 
accepted as a reference. The smartphone's rotation in the 
pedestrian's hand was calculated from the acceleration 
data with the reference. A transformation matrix was 
generated from the obtained rotation. Each dataset was 
evaluated using this transformation matrix. The 
unknown parameters in each method were calculated 
with the selected reference data. The unknowns were 
placed in the formula, and the step lengths were 
calculated for the remaining datasets. 

The accuracy of the SL's was calculated by assuming 
the SL measured by the IMU in each dataset as actual 
values. Equation 1-3 represents the relative error rate of 
SL and total walking distance and Root Mean Square 
Error (RMSE) of SL, respectively. 
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(3) 

To calculate the relative error of the i-th SL, the 
difference of the calculated stride length (𝑆𝐿𝑒

𝑖 ) from the 
actual stride length (𝑆𝐿𝑡

𝑖 ) is calculated, and it is divided 
by the actual SL, and it must be multiplied by 100, and the 
result must be divided by the total stride length (𝑁) in 
the dataset. Similarly, the relative error of the total 
walking distance is obtained by subtracting the sum of 
the actual SL's from the sum of the calculated SL's, 
dividing the result by the total actual SL, and multiplying 
by 100. RMSE is obtained by dividing the difference of the 
calculated step lengths from the actual step lengths by 
the number of steps and taking the square root of the 
result. 
 

3. Results  
 

Estimated step lengths according to the selected ten 
different step length methods; (1) When compared with 
the median value of the actual SL, it was seen that the 
Weinberg (2002) method had the closest values to the 
actual value in 11 of 28 datasets. It was the most accurate 
and sensitive method with 0.001 m from the actual value 
in one of the datasets. Tian et al. (2015) and Bylemans et 
al. (2009) results have been followed by Weinberg 
(2002); the methods that most deviate from the actual 
median are Ladetto (2000), Zeng (2018), Mikov (2013), 
and Alvarez (2008).  

(2) When the RMSE was analyzed, the standard 
deviations of Zeng and Ladetto were found to be the 
smallest, with 0.019 m. Guo, Weinberg, and Bylemans are 
the best methods after Zeng and Ladetto, respectively. 
Weinberg's standard deviation was found to be the best 
in 18 out of 28 data sets. On the other hand, in datasets 
with more steps, Kim and Ladetto have better standard 
deviations. (3) It was observed that the relative SL error 
was the least in Weinberg's method in 16 data sets. It has 
been determined that Weinberg's method has the best 
mean relative error among other methods and the 
slightest error scatter. When the data sets are examined 
one by one, and the total is analyzed, Mikov's method 
gave the most error.  Considering the absolute and 
relative error for the total travel distance, it was 
determined that Mikov's scattering was high, but on the 
contrary, it had the slightest error in some datasets. The 
Weinberg method gave better results than the relatively 
new methods when the absolute and relative total 
traveled distance errors were examined. Zeng and 
Alvarez do not give the most successful results in any of 
the datasets. Successful results were obtained from Kim, 
Mikov, and Bylemans in datasets which are containing 
more steps. 
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Table 1. Information of selected SLE methods 
Models Source SLE Methods Parameters 

Weinberg, 2002 𝐾 × √𝑎𝑣𝑚𝑎𝑥−𝑎𝑣𝑚𝑖𝑛
4  tunable constant (K),  

maximum and minimum vertical acceleration (avmax, avmin) 
 

Ladetto, 2000 𝛼 ∙ 𝑓 + 𝛽 ∙ 𝑣 + 𝛾 coefficients (α, β, γ), 
walking frequency (f), 
the variance of acceleration (v) 
 

 
 
Kim et al., 2004 𝐾 × √∑

|𝑎𝑖|

𝑁

𝑁

𝑖=1

3

 

coefficient (K), 
mean acceleration (ai), 
number of the sample (N) 
 
 

 
Scarlett, 2007 𝐾 ×

∑
|𝑎𝑖|
𝑁

𝑁
𝑖=1  − 𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
 

coefficient (K), 
mean acceleration (ai), 
maximum and minimum vertical acceleration (amax, amin) 
 

Alvarez et al., 2008 𝐾1 ∙ 𝐹 + 𝐾2 tunable constants (K1, K2), 
step frequency (F) 
 

 
 
Bylemans et al., 
2009  

0.1 √𝑎𝑎𝑣𝑔,𝑎𝑏𝑠√𝐾√
𝐹

𝑎𝑣

2.7

 

tunable constant (K), 
step frequency (F), 
average absolute vertical acceleration (aavg,abs), 
difference between the maximum and minimum vertical acceleration (av) 
 

 
Mikov et al., 2013 

𝐾

𝐹
√𝑎𝑣
4  

tunable constant (K), 
step frequency (F), 
difference between the maximum and minimum vertical acceleration (av) 
 

Guo et al., 2016 𝐾1 √𝑎𝑎𝑣𝑔
3 + 𝐾2 tunable constants (K1, K2), 

average absolute acceleration (aavg) 
 

Tian et al., 2015 𝐾 × ℎ × √𝐹 coefficient (K), 
step frequency (F), 
pedestrian height (h) 
 

Zeng et al., 2018 √𝐾2
2 − 4 × 𝐾1 × (𝐾3 − 𝐹) − 𝐾2

2 × 𝐾1
 

coefficients (K1, K2, K3), 
step frequency (F) 
 

4. Discussion 
 

In the study, 28 different databases consisting of 
MEMS sensor data, formed from five users moving in six 
different environments at different speeds and patterns, 
were considered whole, and results were obtained. A 
transformation matrix was generated by looking at the 
first magnetometer and accelerometer records of a 
dataset. Likewise, while calculating the parameters in the 
methods, data from a single dataset were used. Median, 
standard deviation, absolute, and relative error were 
calculated from the obtained step lengths. It was 
observed that eight methods gave approximately the 
same results. The SL was calculated with an average 
error of 13.06%. However, Weinberg's method was the 
best method with an error of 7.44% and 5.61% in SL and 
total walking distance, respectively, while Mikov's 
method was the worst method with 54.34% and 44.63%. 
It is thought that more accurate results can be obtained if 
the acceleration rotation is calculated according to the 
median of the records for each dataset, rather than the 
transformation matrix. However, for a real-time 
pedestrian navigation system, this calculation is trivial 
because not all steps can be obtained. However, it is 
thought that the results can be improved if a separate 
parameter estimation is made for each method in each 

dataset. If the data are grouped according to the number 
of steps they contain, users, or walking environments 
and the parameters are calculated according to these 
groups; it is predicted that more accurate results can be 
obtained. For example, since the user's height 
information is not available, in the Tian method, the 
height is considered a constant and calculated by 
optimization. Changing the optimization method or 
choosing a different starting value has affected the 
accuracy of this method. It was concluded that 
Weinberg's method should be the first choice for many 
navigation applications, considering its accuracy and 
sensitivity, in the absence of sufficient attribute 
information about the database. 

 

5. Conclusion  
 

One of the essential stages of pedestrian navigation 
is SLE. Ten selected SLE methods were studied. Methods 
were applied to the open-source datasets shared by 
Wang et al. 

Future research will be essential to produce a 
variety of open-source datasets that record data from 
more users, include more diverse human behaviors, and 
contain fewer and more steps. By training these datasets, 
more efficient results can be obtained with artificial 
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intelligence. In this way, more vital information can be 
provided in online applications by correcting the 
previous steps. Designing the analyzes made in the study 
as a desktop application and enriching it with artificial 
intelligence, automatically calculating step lengths 
according to the inputs of the dataset, and performing 
accuracy analysis for more various SLE methods will be 
the subject of future research. 
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