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 It is critical to understand the spatial distribution of soil particle fractions to create sustainable 
soil management methods. The spatial distribution of particle fractions has long been studied 
using geostatistics. Soil particle fractions can be assessed and mapped using a variety of 
approaches, but selecting the best appropriate method for anywhere has always been a 
controversial topic in all soil mapping applications. In this study, there is an evaluation of the 
estimation performance of ordinary kriging (OK) and IDW (Inverse distance weighting) 
methods for digital mapping of soil particle fractions. It was determined that the clay content 
of the soil samples was between 24% and 76%, the sand content was between 2% and 69%, 
and the silt content was between 3% and 44%. The performance of the models was evaluated 
by the results of the root mean square error (RMSE) and the sum of the fractions. The best 
results were found using the OK method for Silt (RMSE: 5.36%), while IDW produced more 
high predictions for Clay (RMSE: 13.80%) and Sand (RMSE: 19.90%). In the control of 
composition structure, IDW is the method that most closely predicted the relative sum of the 
three fractions defined as 100%. Creating texture classes in a GIS environment and comparing 
the efficiency of the produced soil fraction maps is advised. 

 
 
 
 
 
 

1. Introduction  
 

The relative proportions of sand, silt, and clay are key 
soil properties that affect many important physical, 
chemical, and biological properties of soils (Saurette et 
al., 2022). Each particle fraction's geographic variation 
patterns are critical for the creation of sustainable 
management techniques. 

Besides the inverse distance weighting (IDW) 
method, which is based on Tobler's first law of geography 
and has no additional requirements regarding spatial 
distribution and sample size (Zhu et al., 2018), ordinary 
kriging (OK), a linear geostatistical interpolation 
technique based on weighting the sums of values at 
adjacent sampled points are the most widely used spatial 
modeling applications for the estimation of soil particle 
fractions (Mousavi et al., 2017). 

From fluvial (river terraces) and colluvial sediments 
to marine and lacustrine deposits containing marl, shale, 
claystone, and flysch as well as limestone and basalts, 

Turkiye's vertisols have a wide range of parent materials. 
Moreover, these soils are also in spatial proximity to 
Fluvisols, which are predominantly formed in aquatic 
sediments associated with rivers and flood plains, and 
lake (Özsoy and Aksoy, 2007). The delta of the Kocaçay 
River and the lacustrine deposits of Lake Manyas form 
the Fluvisol-Vertisol landscape in our study area. 

Any particular area's soil particle fractions are 
controlled by geological and pedological factors, which 
affect their spatial variability. However, in locations 
where alluvial processes are in play, this variability can 
be extremely large. 

Soil texture is one of the most well-known types of 
compositional data. Soil particle fractions that are 
relevant to our investigation total 100%. In the process 
of modeling the soil fractions that we are interested in, 
this has been a topic that has been overlooked.  

The accuracy of this compositional structure can be 
checked by collecting the raster maps of the obtained 
clay, silt, and sand fractions in the geographic 
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information systems environment. Soil scientists can 
analyze the maps created using this approach in addition 
to testing the correctness of the model.  

This study aims to compare two different 
geostatistical methods, which have found widespread 
application in the literature, in an area dominated by 
fluvisols and vertisols soil types, in terms of surface soil 
particle fraction. 
 

2. Method 
 

2.1. Study area 
 

Lake of Manyas is in Northwest Türkiye. The research 
land was located around of lake and covers an undulating 
area of approximately 600 km2 (N35 Zone UTM, 570000-
595000 East, 4440000-4460000 North). The climatic 
conditions are characterized by an average annual 
temperature of 15°C and annual precipitation of about 
700 mm (TSMS, 2022). From the Precambrian through 
the Quaternary, the region's geology is divided into 
distinct strata. It was alluvium transported by rivers that 
blanketed the area following the Miocene deposition of 
Neogene limestones and marls (Mater et al., 2003). There 
are dry agricultural areas in the north of the study area, 
and extensively irrigated agricultural areas like rice in 
the south and west, according to CORINE (CLC, 2018). 
The northern, eastern, and western parts of Lake Manyas 
are dominated by vertisols, whereas the southern parts 
are dominated by fluvisols (Aksoy et al., 2010). 
 

 
Figure 1. Location of the study area, and the spatial 
distribution of the soil sampling points overlaid on the 
Sentinel 2A satellite false-color image 
 
2.2. Soil data 
 

50 soil samples at a depth of 30 cm were taken from 
the research area between June and August of 2019. The 
GPS Magellan eXplorist XL was used to record the 
positions of all sampling points. Fig. 1 depicts the 
locations of the sampling points. The hydrometer method 
(Bouyoucos, 1962) was used to determine the 
distribution of the soil particles fractions were defined 
based on the international soil particle size classification 
of sand (0.05 to 2 mm), silt (0.002 to 0.05 mm), and clay 
(<0.002 mm). 
 
2.3. Geostatistical analysis 

 
Geostatistical analyzes were carried out with the 

features measured at 50 points of the studied region. 
Maximum and minimum statistics, mean, standard 

deviation, skewness, and kurtosis were determined to 
examine the frequency distribution and determine the 
descriptive statistics for each fraction (Table 1). Two 
different geostatistical approaches are presented under 
separate headings. 

 
2.3.1. Inverse distance weighting (IDW)  
 

The IDW model uses the inverse distance relationship 
with the following equation to calculate the weights of 
the values. The IDW interpolation of a value aj for a given 
location j is computed as (Emmendorfer and Dimuro 
2020): 
 

â𝑗
𝐼𝐷𝑊 =∑𝑤𝑖,𝑗

𝑛

𝑖=1

â𝑖 (1) 

 
where each âi , i= 1, . . . ., n is a data point available at a 

location i. The weights of wi,j , for each data point are 
given as: 
 

𝑤𝑖,𝑗 =
𝑑𝑖,𝑗
−𝛼

∑ 𝑑𝑖,𝑗
−𝛼𝑛

𝑘=1

 (2) 

 
where di,j, is the Euclidean distance between a data 

point available at location i and the unknown data at 
location j; n is the number of data points available; α 
means the power, is a control parameter. The ArcGIS 
10.8-Geostatistical Wizard-IDW tool was used to 
generate distribution maps and model results for 
geographic coordinated soil particle fractions (ESRI, 
2021). 
 
2.3.2. Ordinary Kriging (OK) 
 

To examine the spatial variations of the soil particle 
fractions, the experimental semivariogram was 
calculated and the spatial structure of the data was 
investigated in the studied region. Theoretical models 
were fitted to these.  

The spatial variation structure, the Semivariogram, is 
determined using the following equation; 
 

𝛾(ℎ) =
1

2𝑛(ℎ)
∑[𝑍(𝑋𝑖

𝑛

𝑛=1

) − 𝑍(𝑋𝑖 + ℎ)]2 (3) 

 
where n is the number of pairs of the sample 

separated by the distance h and Z(Xi) the value of sampled 
point in ith point (i = 1,2,3, …, n). Each of the three 
fractions studied had a different best model (in terms of 
RMSE) (Fig. 2, Table 3). 

To estimate soil particle fraction at unsampled points 
 

𝑍(𝜇) =∑𝜆𝑖𝑍(𝜇𝑖

𝑛

𝑖=1

) (4) 

 
where Z(μ) is the predicted value of unsampled point; 

Z(μi) is the ith point by measured value; λi is the ith point 
by undefined weight for the estimated value; n is the 
number of sampled values. 
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The ArcGIS 10.8-Geostatistical Wizard-Ordinary 
Kriging tool was used to generate distribution maps and 
model results for geographic coordinated soil particle 
fractions (ESRI, 2021). 

 
2.4. Summation of the predicted soil particle size 

fractions 
 

Clay, silt, and sand all make up 100% of the soil 
texture composition. Using such data, the predicted 
components must amount to 100% over the entire model 
(Amirian-Chakan et al., 2019). Raster maps of the soil 
particle fraction produced by two different approaches 
were collected with the ArcGIS 10.8-Arctoolbox-Spatial 
Analyst-Map Algebra-Raster calculator tool (ESRI, 2021). 
 
3. Results  

 
3.1. Descriptive statistics of soil particle fractions 
 

Table 1 was listed the descriptive statistics results of 
the analyzed datasets. In the study area, the highest 
average was determined in Clay with 48.2%, while the 
lowest was in Silt with 19.8%.  
 
Table 1. Descriptive statistics of soil particle fractions. 
Abbreviations: SD: Standard deviation, CV: Coefficient of 
Variation (%). Min.: Minimum, Max.: Maximum, Ske.: 
Skewness, Kur.: Kurtosis 

 Mean SD CV Min. Max. Ske. Kur. 

Clay 48.2 13.2 27.4 24.1 75.6 0.0 -0.9 
Silt 19.8 6.7 33.8 3.00 44.2 1.5 5.0 
Sand 31.9 13.5 42.4 2.60 68.6 0.3 0.0 

 
The highest coefficient of variation (CV) in the study 

area was found in the sand with 42.4%. The skewness 
coefficients were quite close to 0 for clay and sand, while 
positive skewness values were present for Silt. 
Meanwhile, the kurtosis coefficient for silt was quite high 
compared to the other two fractions (Table 1). 
 
3.2. Variogram analysis and spatial autocorrelation  
 

Figure 2 depicts the experimental variograms of clay, 
silt, and sand content, together with the fitted different 
models. 
 

 
Figure 2. Variograms and fitted models. 
 

The tested models (Spherical, Gaussian, Exponential) 
were modeled with an experimental variogram of soil 

fractions. The nugget: sill ratio (NSR) represents a 
contribution of the nugget to the overall spatial structure 
of the variogram and it can be calculated as NSR = 
C0/(C0+C). The NSR indicates how geographically 
dependent or autocorrelated the measured attribute is. 
Ratios below 0.25 indicate a strong spatial correlation, 
while ratios above 0.75 indicate a weak spatial 
correlation, with a median value between 0.25 and 0.75 
suggesting moderate spatial dependency (Adhikari et al. 
2013). The NSR ranged from 0.0 to 0.12 within the three 
fractions, showing strong spatial dependence (Table 2). 
 
Table 2. Semivariogram model properties for soil 
particle fractions.  

Soil particle 
fractions 

Model 
Nugget 
(c0) 

Sill 
(c0+c) 

Nugget 
/Sill 
Ratio 

Range 
(m) 

Clay Sph. 8.74 177.2 0.04 2425 
Silt Gau. 6.48 51.9 0.12 5450 
Sand Exp. 0.0 188.9 0.0 3358 

 
3.3. Model performance and predicted maps 
 

Table 3 displays the results of modeling soil particle 
fractions with IDW and OK geostatistical methods. The 
fitted variograms for the soil particle fractions were 
spherical for Clay, gaussian for silt, and exponential for 
sand (Fig. 2 and Tablo 3).  Zeraatpisheh et al. (2022) 
found predominantly spherical and exponential 
mathematical models in the modeling process of soil 
fractions. While for Silt the lowest root mean square 
error values were obtained from the OK-Gaussian model, 
Clay and Sand, it was obtained from the model produced 
as a result of setting the power parameter of IDW to 1 
(Table 3).  
 
Table 3. Comparisons of the accuracy of IDW and OK 
models for cross-validation results of soil particle 
fractions (Root mean square value) 

Fractions OK IDW 
Model 
/Parameter 

Sph. Exp. Gau. 1 2 

Clay 14.47 14.54 14.63 13.80 14.68 
Silt 5.54 5.71 5.36 6.16 6.06 
Sand 14.54 14.31 14.37 13.94 14.54 

 
Continuous maps for each soil fraction in the study 

area were shown in Fig. 3. Both different methods 
produced similar distributions for clay and silt. The 
southeast of the study area was characterized by higher 
silt and lower sand contents than the overall area (Fig. 3-
a-d). This was a considerable difference in the 
distribution of the sand fraction between the two models. 
Considering the minimum and maximum values in the 
data set for Sand (Table 1), it is seen that the OK method 
cannot exemplify the minimum values of Sand (Fig.4-f). 
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Figure 3. Map of predicted soil particle fractions 
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4. Discussion 
 

Spatial modeling of each of the soil particle fractions 
is a popular approach because of the particular 
importance of each of the fractions (Saurette et al., 2022). 
Geostatistical models based on distinct mathematical 
foundations shows to have similar model accuracy 
(Table 3). Significant differences were determined for 
Sand in particular for the produced spatial maps. Here, it 
should be well known for IDW that the maximum and 
minimum of estimated values from IDW are limited to 
the extreme data points in the data set (Emmendorfer 
and Dimuro, 2020). When compared to OK, this IDW 
made no significant change in forecast maps for Silt and 
Clay, while it made a substantial difference for Sand. IDW 
was found to be more successful in reflecting the 
minimum and maximum values of the sand fraction 
better in the fluvisols areas concentrated in the southeast 
of the study area. OK and IDW produced similar 
distribution maps and minimum and maximum values 
for silt. Again for Clay, OK and IDW produced similar 
minimum and maximum values, while OK produced 
sharp map boundaries. (Fig. 3-b,f). The sharp boundaries 
that OK produces based on mathematical calculations 
may not have a counterpart in the field. The fact that OK 
produces such maps, especially for Sand and Clay, may be 
related to the decrease in model accuracy values (Table 
3). Sharply demarcated maps may not represent the 
mapping unit boundary approach in soil maps. Soil 
texture, which is well-known for its compositional 
structure, must be evaluated to see if these three 
functions are all equal to 100% totally. Considering the 
maps produced as a result of collecting the estimated 3 
fractions in a raster environment, those regions that have 
a total of more than 100 and less than 100 are 
concentrated in the research area's southern and 
southeasterly sections (Fig. 3-h). These regions are 
characterized by alluvial deposits. In this regard, it is 
recommended to carry out spatial mapping applications 
by making precise and more sampling in these regions, 
specific to the study area. High changes in soil fraction at 
short distances are characteristic of alluvial deposition 
zones (Basayigit and Senol, 2008). Similarly, in a study 
area that developed mainly on Quaternary aged alluvial 
deposits, the totals of the spatially estimated soil fraction 
maps with different approaches appeared in the range of 
96% to 104 (Amirian-Chakan et al., 2019). The summing 
values for IDW range from 99 to 101%, whereas the 
summing values for OK range from 62.39 to 166.91% 
based on our findings (Fig. 3 g-h). The mathematical basis 
of the OK method for each fraction may have caused this 
difference. Using GIS tools, it is possible to create texture 
classes and compare the resulting soil particle fractions 
(Saurette et al., 2022). 
 
3. Conclusion  
 

The results of our study demonstrate the 
effectiveness of 2 different well-known geostatistics (OK 
and IDW) applications to study and analyze the spatial 
behavior of soil texture content in an area with high 
variability over short distances. To evaluate the 
uncertainty of the maps obtained, the collection of the 

fractions we suggest and the control due to the 
compositional structure should be expressed as a 
significant issue. For soil surveyors, the geostatistical-
based model must resemble natural classes that will form 
the distribution map of soil texture, as well as statistical 
success.  Using other data layers such as digital data to 
represent the formation of soils (topographic 
parameters, parent material, organism) and other 
information that may affect the spatial distribution of soil 
texture in fluvisols and vertisols, and using advanced 
statistical learning algorithms suggest that studies be 
carried out by making more analysis in a way that can 
reveal non-linear relationships. 
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