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 Harmful Algal Blooms (HABs) are problematic algal blooms that cause toxicity and associated 
environmental impacts on freshwater, marine and coastal ecosystems. HABs produce strong 
toxins that pose a threat to humans and wildlife, with significant negative impacts i.e., food 
web vectoring, airborne toxic events, decay of algal blooms resulting in low oxygen or hypoxia 
and killing fish and birds. Measurement of algae concentrations has conventionally relied on 
direct water sampling for lab-based cell enumeration. These traditional approaches are 
extremely labor-intensive, tedious, and limited spatially and temporally. Remote sensing (RS) 
based methods are capable to handle these complications in inland and near-coastal waters 
(consistent revisit rate for well-structured time series analyses, regular and reliable 
observations over a large area). The Multispectral Instrument (MSI) onboard European Space 
Agency’s (ESA) Sentinel 2 satellite initiates a new era in high-to-moderate resolution (10, 20, 
60 m) of earth observation data. Sentinel 2A (S2A) satellites launched in 2015 as a part of the 
ESA’s Copernicus program. S2A filter-based push-broom imager, measures the reflected solar 
spectral radiances in 13 spectral bands ranging from the visible-near infrared (VNIR) (0.4422-
0.8640 μm) to the short-wave infrared (SWIR) (0.9432-2.1857 μm) bands. This study aims to 
develop a method to estimate Chlorophyll-a (Chl-a) concentration in freshwater lake waters 
using in situ data of Chl-a, water reflectance, and contemporaneous S2A imagery over the 
Kotmale reservoir Sri Lanka.   

 
 
 
 

1. Introduction  
 

Algae are neither homogenous organisms, nor belong 
to natural taxonomic grouping. They are eukaryotic 
organisms that has permanent plastid, Chl-a as their 
primary photosynthetic pigment (Granéli and Turner, 
2006). Algae are unicellular prokaryotes, their growth is 
driven by light, nutrient (nitrate and phosphates) and 
temperature. These organisms are primary producers; 
produce food via photosynthesis and key foundation of 
marine and freshwater food chains and webs (Klemas, 
2012). Freshwater ecosystems provide unique habitats, 
supports high level of biodiversity. These ecosystems 
occupy approximately 0.8% of the Earth’s surface but 
support almost 6% of all known species, i.e., more than 
10, 000 fish species live in freshwaters, which is about 
40% of the global fish species. Moreover, these 
freshwater ecosystems provide irreplaceable goods and 

services. Inland lakes, rivers are among the most 
threatened freshwater ecosystems on the Earth. Besides, 
biodiversity losses in freshwaters are much faster or 
even worse (Xiong et al., 2020).   

HABs are ubiquitous (Clark et al., 2017; Liang et al., 
2017; Torbick and Corbiere, 2015), posing serious 
threats to marine and freshwater aquatic ecosystems and 
causes significance health consequences. HABs are an 
issue in marine, brackish, and freshwater systems. Large 
and tiny lakes, reservoirs, rivers, ponds, dugouts, and 
wide selection of other surface waters were affected 
worldwide. HABs and toxic algae kill fish and birds, food 
web vectoring, airborne toxic events, decay of algal 
blooms resulting in low oxygen or hypoxia, impede visual 
predators, attenuate light to submerged aquatic 
vegetations, distress in humans resulting respiratory 
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irritations, breathing difficulties, and even mortality (Xu 
et al., 2019; Palacios et al., 2017). 

Microcystis aeruginosa is considered as a 
Cyanobacterial HAB organism which impede 
recreational use of waterbodies, reduce esthetics, lower 
dissolved oxygen concentration and cause taste and odor 
issues in drinking water. They also produce microcystins 
(MC-LR) which are powerful hepatotoxins. Long-term 
exposure to MC-LR causes development of liver cancer 
and liver tumors under low-level exposer (Metcalf et al., 
2018; Palacios et al., 2017). Yet not all cyanobacterial 
genera are toxic. Different cyanobacteria produce similar 
toxins i.e., Microcystis sp, Anabaena sp, and Anabaenopsis 
sp all have been capable of producing microcystin 
(Torbick and Corbiere, 2015). Furthermore, 
cyanobacterial toxins also implicated among the factors 
contributing to chronic kidney disease of uncertain 
etiology in Sri Lanka. Thus, presence of cyanobacterial 
harmful algal bloom formation in freshwaters is a serious 
concern (Kulasooriya, 2017).  

HABs are extremely patchy, they often remain 
unobserved by current monitoring programs, and spatial 
and temporal frequencies of conventional water 
sampling programs are not adequate to report changes 
in phytoplankton biomass, bloom conditions. 
Conventional in situ sampling and laboratory 
measurements comprise of physicial, chemicial and 
biologicial properties and indicators. Though, the in situ 
measurements of water quality parameters only 
represent point estimates of water quality conditions in 
time and space nevertheless, obtaining spatial-temporal 
variations in large waterbodies are almost impossible, 
conventional methods are extremely labor-intensive, 
tedious, monitoring and forecasting of entire 
waterbodies might be unapprochable, due to water 
surface extent and toporgaphic characteristics 
(Gholizadeh et al., 2016; Ouma et al., 2018).  

RS become an effective tool to derive the spatial and 
temporal behavior of aquatic ecosystems (Liang et al., 
2017; Neil et al., 2019). Combination of RS with 
conventional in situ sampling methods coupled with 
laboratory measurements and analysis may provide 
effective approach (Bonansea et al., 2018). Numerous 
algorithms have been developed to estimate Chl-a 
concentrations. Namely, Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS), Moderate Resolution Imaging 
Spectroradiometer (MODIS), Medium-spectral 
Resolution Imaging Spectrometer (MERIS), Sentinel 2 
and 3, Landsat Operational Land Imager (OLI) and 
Enhanced Thematic Mapper Plus (ETM+) which are 
spaceborne missions that have been frequently used in 
deriving the information on Chl-a concentrations. 

Chl-a taken as the index of phytoplankton abundance, 
and may result in visible changes in water bodies. HABs 
have distinct spectral characteristics i.e., significant 
absorption bands around 500 nm, 675 nm and 
reflectance peaks 550 nm, and 700 nm; which is caused 
due to dramatic increase of phytoplankton biomass. 
When a HAB dominates the phytoplankton biomass, Chl-
a concentration has the advantage of providing an 
estimate of the total concentration of the bloom (Kutser, 
2004).  
 

2. Method 
 

The datasets in this research include S2A satellite 
imagery of Kotmale reservoir, Sri Lanka acquired on July 
21, 2020, approximately at 05:06 GMT.  Level -1C MSI 
data downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/dhus) provided by 
European Space Agency. Water samples at 45 study 
points were collected randomly. Coordinates for water 
sample stations were recorded using a global positioning 
system (GPS). The in-situ data and corresponding 
satellite image pixels were used to develop and evaluate 
the supervised learning method for retrieval of the Chl-a 
concentration in the lake. 

 

2.1. Laboratory Analysis of Chlorophyll-a 
 

Chl-a quantification, used to estimate the total 
phytoplankton biomass, was carried out according to the 
Lorenzen, 1967 method. Each sample was filtered using 
0.8 μm pore size filters under vacuum pressure that were 
then kept frozen at 253.15K for 8-12 hours in darkness. 
Chl-a was extracted from these filters in methanol by 
ultrasonication and agitation. The extracts were 
centrifuged at 13300 rpm for 10 minutes to reduce the 
turbidity. The Chl-a concentration of the extracts was 
determined spectrophotometrically using a Labomed 
UV-VIS RS spectrometer. Chl-a concentration was 
calculated accordingly. 

 

2.2. Atmospheric Correction   
 

Removing the intervening atmosphere effect from 
S2A satellite imagery is vital for the accurate estimation 
of Chl-a concentration in the reservoir. In this research, 
the Rayleigh correction is carried out to obtain the 
Rayleigh-corrected reflectance. The reflectance to 
radiance results from the below formula: 

 

𝐿𝑇𝑂𝐴(𝜆) =  
𝑄𝑐𝑎𝑙 𝐸(𝜆) 𝑐𝑜𝑠𝜗𝑖

𝜋 𝑑2
 (1) 

 

Where LTOA(λ) is Rayleigh adjusted radiance (Wm-
2sr-1), Qcal is the pixel value, θi is the incidence angle 
(radians), E(λ) mean solar irradiance for each band (Wm-
2) and d is the sun-earth distance in astronomical units 
(AU). For Sentinel 2 the incidence angel is substituted 
with the values from the sun zenith band θs. 

Undetected clouds can produce misleading results in 
the analysis of surface and atmospheric parameters. 
Water color RS products requires reliable cloud 
detection and cloud shadow detection and classification 
before atmospheric correction. The SHIMEZ method 
assumes that clouds are grey to white. Assumption is 
made that the mean of the red, blue, and green bands 
greater than a defendable threshold (B) (0.25), and that 
the difference between each of two bands lower than a 
pre-determined threshold (A) (0.15 over the day). 
 

2.2.1. Algorithms for Chlorophyll-a  
 

All available band ratios, frequently used for Chl-a 
estimation were assessed in this study, including two 
blue-green band ratios (B1/ B3 and B2/B3, respectively) 
one green-red band ratio (B3/B4), two NIR-red band 
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ratios (B5/ B4 and B6/B4, respectively) one NIR-Red 
three-band ratio ((B5 + B6) /B4) and Normalized 
Difference Chlorophyll Index (B4-B6/B4+B6). 

 

2.2.2. Quantifying the Quality of Predictions 
 

Standard statistical metrics were used to evaluate 
the empirical model to estimate Chl-a in the reservoir. 
The Root Mean Square Error (RMSE), Normalized Root 
Mean Square Error (NRMSE), Mean Absolute Percentage 
Error (MAPE) metrics were used. 

 

3. Results  
 

All cross-regression analyses between Chl-a and 
sensor radiance that corresponds to the band ratios 
shown in Table 1 and Table 2 including the locations 
under semitransparent clouds and cloud shadows.  

 

Table 1. Performance of selected Chlorophyll-a 
estimation algorithms and results of the best-fit curve 
analyses 

S2A band ratio 
Regression equation coefficients 

𝐥𝐧 𝒀 =  𝜷𝟎 + 𝜷𝟏 𝒙 
𝜷𝟎 𝜷𝟏 

B1/B3 17.5 -12.6 
B2/B3 21.2 -18.0 
B3/B4* -36.8 22.3 
B5/B4 -22.7 24.6 
B6/B4 -10.9 7.7 
B5+B6/B4 -15.7 6.5 
B4-B6/B4+B6 -3.3 18.6 

 

Table 2. Selected Chlorophyll-a estimation 
algorithms and results of the best-fit curve analyses for 
in situ measurements of Chlorophyll-a located under 
semitransparent clouds and cloud shadows 

S2A band 
ratio 

Regression equation coefficients 

𝒀 =  𝜷𝟎 + 𝜷𝟏𝒙 + 𝜷𝟐𝒙𝟐 + 𝜷𝟑𝒙𝟑 
𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 

B1/B3 -2105.9 4421.6 -3090.8 719.4 

B2/B3 -9827.0 23674.9 
-

19007.1 
5085.2 

B3/B4* -927.7 1775.4 -1133.0 241.12 
B5/B4 1762.6 -5470.8 5659.6 -1951.4 
B6/B4 457.5 -1162.9 98.3 -277.4 
B5+B6/B4 1592.4 -2227.4 1038.0 -161.6 
B4-
B6/B4+B6 

1.9 75.3 954.6 3857.5 

 

Figure 2. Chl-a retrieved from S2A MSI (B3/B4 
Exponential curve fitted) in Kotmale reservoir. Areas 
covered with semitransparent clouds and cloud shadows 
are masked in color gray 
 

The summarized statistical analyses of the S2A MSI 
derived Chl-a concentrations over the locations including 

study points under semitransparent cloud cover are 
listed in Table 3 and Table 4 respectively. 
 

 
Figure 3. Chl-a retrieved from S2A MSI for study points 
under the semitransparent cloud and loud shadows 
(B3/B4 Polynomial curve fitted) in Kotmale reservoir. 
Dense clouds and cloud shadows are masked in dark 
gray. 

 

Table 3. Validation of Sentinel 2A band ratio models 
considering RMSE, NRMSE and MAPE 

S2A band 
ratio 

RMSE NRMSE MAPE 

B1/B3 0.180 0.454 0.534 

B2/B3 0.190 0.478 0.853 

B3/B4* 0.092 0.233 0.255 

B5/B4 0.149 0.374 0.914 

B6/B4 0.167 0.422 0.749 

B5+B6/B4 0.163 0.410 0.799 

B4-
B6/B4+B6 

0.167 0.421 0.758 

 

Table 4. Validation of S2A band ratio models considering 
RMSE, NRMSE and MAPE for in situ measurements 
located under semitransparent clouds 

S2A band 
ratio 

RMSE NRMSE MAPE 

B1/B3 0.154 0.591 12.696 

B2/B3 0.091 0.349 2.019 

B3/B4* 0.055 0.213 3.142 

B5/B4 0.116 0.447 6.167 

B6/B4 0.120 0.463 6.167 

B5+B6/B4 0.120 0.463 6.554 

B4-
B6/B4+B6 

0.110 0.421 6.022 

 

4. Discussion 
 

Evaluation on the performances of frequently used 
band ratio algorithms for estimating Chl-a in Kotmale 
reservoir, demonstrated the appropriateness of green-
red two band ratio to estimate Chl-a in the reservoir 
using S2A data. The  cross-relationship of Chl-a and 
band ratios for non-cloudy locations, with the strongest 
correlation, was detected between under exponential 
curve fit of Chl-a and band ratio of B4/B4. Measurements 
located under clouds and cloud shadows show a 
correlation with Chl-a and band ratio of B3/B4 under 
polynomial fit. 

 

5. Conclusion  
 

The main aim of this study was to evaluate the 
suitability of S2 MSI imagery for mapping lake water 
quality parameters (Chl-a) by means of band ratio type 
algorithms, which has demonstrated good performance 
in previous water color remote sensing studies. 
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The clouds’ interference can cause lowering of the 
signal to noise ratio of reflectance, especially in blue and 
green bands, which were used to calculate the calibrated 
spectral radiance, which might be problematic for 
predicting low spectral band ratio derived Chl-a in the 
study points which are located under clouds and cloud 
shadows.  

The second prominent reflectance peak around 700 
nm occurred because of minimal absorption of water 
constituents i.e., Chl-a, Colored Dissolved Organic Matter 
(CDOM), non-algal particles (NAP) and particulate 
backscattering, which controls the reflectance variations 
in this region. While the peak magnitude; near 700 nm vs. 
Chl-a concentration indicated a very poor relationship, 
the increase in the Chla concentration caused the 
displacement of the peak position in the red region which 
is usually observed in turbid and productive waters. The 
NIR-Red band ratio algorithms did not result in a 
significant improvement in performance relative to the 
green-red two band ratio model feasibly because of the 
effect of absorption by CDOM NAPs. 
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