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 With the recent developments in remote sensing technology, satellite images with high 
spatial and temporal resolution have been becoming widely available. Very high resolution 
(VHR) satellite images are very appropriate data sources for geospatial object detection 
using deep learning algorithms. Airplane detection from satellite images is one of the 
significant application areas to support airspace inspection, airline traffic control, and 
defense applications. In this study, we compared various variants of YOLOv5 (You Only Look 
Once) models and the Scaled-YOLOv4 model for aircraft detection from satellite images. We 
implemented different hyperparameters, optimization algorithms, and data augmentation 
methods. Finally, based on the results of numerous experiments, we evaluated the 
advantages and disadvantages of both methods. Our analysis illustrated that the best 
mAP@0.50:0.95 value of 0.865 belongs to the YOLOv5x model with 16 batch sizes. Whereas, 
in terms of computational efficiency, the Scaled-YOLOv4 model has the shortest duration in 
the training. 

 
 
 

1. Introduction  
 

Aircraft detection from satellite images is an 
important topic since obtained information is used for 
traffic control, airport activity monitoring, 
environmental impact assessments, and defense 
applications. Satellite systems with their capabilities of 
covering large areas, including high spatial details, fast 
data collection, and processing times are important 
sources of information for the geospatial object detection 
such as planes, ships, storage areas, and buildings 
(Alganci et al., 2020; Bakirman et al., 2022; Cheng and 
Han, 2016; Psiroukis et al. 2021). 

Manual digitization of geospatial objects from 
satellite images is highly dependent on the experience of 
the operator and it is time-consuming. Therefore, it is 
essential to develop accurate automatic approaches for 
geospatial object detection. Deep learning-based 
approaches have become widespread in 2012 and later, 
especially after the successful conclusion of the ImageNet 
competition.  

Different disciplines and applications have benefited 
from DL methods. In the Remote Sensing (RS) domain, DL 
methods are also used for the detection of different 
geospatial objects, land cover/use segmentation, and 

pan-sharpening. For the object detection tasks, You Only 
Look Once (YOLO) models are common since accurate 
and fast results could be obtained using YOLO models 
(Redmon et al., 2016; Li et al., 2017; Krizhevsky et al., 
2012; Wang et al., 2021). 

In recent years, with the developments in graphics 
cards and the production of GPU-based solutions, deep 
learning-based methods have become more common. In 
addition, the Google Colab platform has made a 
significant contribution to deep learning studies with its 
cloud-based computing environment and efficiency to 
implement different DL frameworks and libraries. 

In this study, we aimed to automatically detect 
airplanes from very high-resolution satellite images 
using the High Resolution Planes (HRPlanes) data set and 
a new test data set generated from satellite images of 
different airports and air bases obtained from the Google 
Earth platform.  

We implemented different experimental designs for 
YOLOv5 variations and Scaled-YOLOV4 models, and 
these compared two YOLO models. For experimental 
designs, we tried various hyperparameter values, 
optimization functions, and data augmentation methods. 
We compared the results of our experiments based on 
Mean Average Precision (mAP) values. 
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2. Method 
 
2.1. Data and Environment 
 

We used the HRPlanes dataset that includes high-
resolution satellite images from various airports across 
the world (Bakirman & Sertel, 2022). The sizes of the 
images are 4800 x 2703 pixels. HRPlanes dataset was 
divided into 1686 training and 404 validation images. In 
addition to this dataset, we also collected 100 images 
from Google Earth and used them as the independent test 
set. 

We implemented our experiments in the Google Colab 
Pro development platform, in which we could able to use 
an Nvidia P100 graphics card. We used YOLOv5x and 
YOLOv5l variants of YOLO5 and the Scaled- YOLOv4 
models (Mahendrakar et al., 2021; Wang et al., 2021). 
 

2.2. Data Augmentation 
 

We used Hue, Saturation, Value (HSV), and mosaic 
data augmentation methods to synthetically increase the 
dataset. HSV specifies colors based on hue, saturation, 
and brightness values rather than Red, Green, and Blue 
(RGB) values. HSV provides better results for the object 
with a specific color. The mosaic method, on the other 
hand, combines 4 training images into one image with 
certain ratios. Thus, the trained model can learn the 
identification of objects at a smaller scale than normal 
(Hao & Zhili, 2020). 
 

2.3. YOLOv5 Algorithm 
 

In region-based algorithms, possible positions of 
individual objects are fed into the network. For this 
reason, the processing load increases, and it takes a long 
time to get results from the model. The most important 
feature of the YOLO algorithm is that it works fast 
because it passes through the neural network at once by 
dividing the image into grids (Jocher et al., 2022). The 
purpose of griding is to detect the object and enclose it in 
a bounding box. If both grids detect an object, it uses a 
non-maximum suppression method to eliminate clutter. 
With this method, the bounding box with the smaller 
probability value is removed (Krizhevsky et al., 2012) 

The difference between YOLOv5 from older YOLO 
algorithms is that it uses the Pytorch framework (Jocher 
et al., 2022). In architecture, the backbone is the feature 
extraction layer. An interlayer called BottleNeck is used 

to obtain more information while estimating objects 
(Figure 1). 
 

 
Figure 1. YOLOv5 Architecture [2] 
 
2.4. Scaled-YOLOv4 Algorithm 
 

Scaled-YOLOv4, which is a different version of 
YOLOv4, aims to improve the training time by scaling the 
model. To ensure this, both the depth, width, and 
resolution values of the model and the structure of the 
network are scaled using the Cross Stage Partial (CSP) 
pproach (Mahendrakar et al., 2021).  CSP divides the 
input into two different paths and convolutions to one 
path (Jocher et al., 2022; Wang et al., 2020). In the output 
part; combining these two paths provides the result. 
 
2.5. Experiment Design 
 

In this study, we conducted and evaluated 11 
experiments with different settings including various 
model, network, optimizer batch size, and data 
augmentation combinations. Yolov5 and Scaled-Yolov4 
tests were performed using the Pytorch library. 1686 
training images and 404 validation images were used in 
each test. The network sizes were 640x640, 960x960, 
and 1280x1280 in YOLOv5 tests and 416x416 in Scaled-
YOLOv4 tests. In order to make comparisons between the 
tests, the iteration number was kept constant at 100, but 
different hyperparameters and augmentations were 
used. While 16 and 8 values are used as batch size, 
mosaic and HSV (hue, saturation, value) are used as data 
augmentation. These configurations are summarized in 
Table 1. 
 

 

Table 1. Experimental setup 
No Model Network Optimizer Batch Size Augmentation 

Exp-1 YOLOv5m 1280x1280 SGD 8 Image HSV-Saturation(0,7)- Hue(0,015)-Value(0,4) 

Exp-2 YOLOv5m 1280x1280 Adam 8 Image HSV-Saturation(0,7)- Hue(0,015)-Value(0,4) 

Exp-3 YOLOv5x 960x960 SGD 16 Image HSV-Saturation(0,7)- Hue(0,015)-Value(0,4)-Mosaic 

Exp-4 YOLOv5x 640x640 SGD 16 Image HSV-Saturation(0,7)-Hue (0,015)-Value(0,4) 

Exp-5 YOLOv5l 960x960 SGD 8 - 

Exp-6 YOLOv5l 640x640 Adam 8 Mosaic 

Exp-7 YOLOv5l 640x640 SGD 16 Image HSV-Saturation(0,7)-Hue(0,015)-Value(0,4) 

Exp-8 YOLOv5l 960x960 SGD 8 Image HSV-Saturation(0,7)-Hue(0,015)-Value(0,4)-Mosaic 

Exp-9 Scaled-YOLOv4 416x416 SGD 8 Image HSV-Saturation(0,7)-Hue(0,015)-Value(0,4) 

Exp-10 Scaled-YOLOv4 416x416 SGD 16 Image HSV-Saturation(0,7)-Hue(0,015)-Value(0,4), Mosaic 

Exp-11 Scaled-YOLOv4 416x416 SGD 16 - 
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2.6. Evaluation Metrics 
 

The results of different experiments were evaluated 
with mean average precision(mAP) Precision alues at 
Union (IoU) threshold value of 0.50 (mAP@0.50), and 
avarege of AP values from IoU of 0.5 to 0.95 
(mAP@0.50:0.95), Precision and Recall metrics 
(Henderson and Ferrari, 2016). 
 
3. Results and Discussion 
 

Our results showed that among the YOLOv5 models, 
the X and M models achieved higher mAP values. 
Through them, the YOLOv5x with 960x960 network size 
(Exp-3) yielded the best outcome (Table 2). In addition, 
this implementation provided higher mAP values in 
initial steps, which pointed out a faster learning 
capability with less iterations.  

However, increasing the network size in the L model 
(Exp –8) resulted in a mAP value that was comparable to 
the YOLOv5x (960) model, which, while halving the 
training time. 

When the optimization functions are compared, 
models trained with Adam produced lower mAP values 
than the models trained with Stochastic Gradient 
Descent (SGD). It also took longer in terms of training 

time. Thus, we recommend use of SGD in similar 
experiments.  

Increments in the batch size improved the detection 
accuracy, however it requires more computational 
power, which resulted in increased computation time in 
our experiment setup. 

When the detection results are evaluated visually, it 
can be commented that, both models provided 
satisfactory detections, even with challenging 
background and atmospheric conditions. More over both 
models are able to detect airplanes with different sizes 
(Figure 3).  
 

 
Figure 2. mAP graphic for YOLOv5 implementations. 
 

 

Table 2. Evaluation metric results 

No Precision Recall mAP@0.50 mAP@0.50:0.95 Time 

Exp-1 0.979 0.976 0.987 0.863 5h 9min 10sec 

Exp-2 0.988 0.977 0.993 0.860 9h 12min 5 sec 

Exp-3 0.994 0.978 0.994 0.865 16h 4min 23sec 

Exp-4 0.993 0.979 0.994 0.799 12h 14min 42sec 

Exp-5 0.941 0.968 0.979 0.857 8h 6min 34sec 

Exp-6 0.978 0.968 0.982 0.789 7h 59min 12sec 

Exp-7 0.980 0.977 0.983 0.805 5h 6min 12sec 

Exp-8 0.990 0.983 0.992 0.864 8h 2min 17sec 

Exp-9 0.843 0.973 0.972 0.754 1h 9min 19sec 

Exp-10 0.879 0.976 0.98 0.796 1h 39min 10sec 

Exp-11 0.877 0.975 0.979 0.782 1h 49min 41sec 

 

 
(a) (b) 

Figure 3. Detection previews from a) Scaled-YOLOv4 and b) YOLOv5 Architecture  
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4. Conclusion  
 

Within the scope of this study, YOLOv5 and Scaled-
YOLOv4 deep learning models were evaluated with a 
total of 11 tests with different hyperparameters, 
augmentations and network sizes. In this context, 
YOLOv5 models produced the highest mAP values.  

In particular, increasing the number of batches (batch 
size) provided an increase of 0.042 at the value of 
mAP@0.50:0.95 for the same model. In addition, 
increasing the network size provided an increase the 
value of mAP@0.50:0.95 for the all models. Preferring 
smaller scale models of YOLOv5 and using more 
powerful graphics cards can enable model training with 
higher number of batch sizes, thus may result in higher 
success rates indirectly.  

In addition, for systems that do not need very high 
accuracy, the Scaled-YOLOv4 model can be used to save 
time. It completed the model training about 4 to 6 times 
faster than the YOLOv5 models. 
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