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 Flood, as a natural phenomenon, is the most common natural hazard that causes significant 
damage in the world. It is difficult to predict and identify flood zones due to variable weather 
conditions and various influencing factors. However, the identification and detection of early 
flood zones using machine learning techniques is used for smart flood management. In this 
study, Chi-square automatic interaction detection (CHAID) machine learning model for flood 
susceptibility map in Sardabroud watershed in north of Iran has been evaluated. For this 
purpose, a spatial database including 205 present and past flood locations with 8 conditional 
factors including elevation, slope, landuse, normalized difference vegetation index (NDVI), 
distance to river, topographic wetness index (TWI), lithology and rainfall are considered. After 
calculating variance inflation factors (VIF), all of the flood factors were considered for the 
modeling process. VIF technique uses to quantify multi-collinearity. Receiver operating 
characteristic (ROC), area under curve (AUC) and accuracy (ACC) metrics were used to 
evaluate and compare the predictability of the model. The results show that the CHAID model 
reaches an AUC of 0.939. This model has been proven as an efficient model for detecting flood 
prone areas in this watershed. 

 
 
 
 

1. Introduction  
 

Flood is known as one of the most frequent and 
destructive natural disasters in the world among other 
natural disasters such as earthquake and droughts due to 
causing great damage to human life and property and 
lives (Du et al. 2013). 

The reasons for urban floods are the weakness of 
drainage systems and water infiltration into the ground 
during stormy rains and unhealthy urban growth (Darabi 
et al. 2019). Monsoon is one of the reasons why southeast 
Asian countries are most affected by floods and most of 
their related events (Loo et al. 2015). Iran has 
experienced a number of floods, especially in the 
northern parts of the country. For example, Noshahr in 
2012, Behshahr in 2013 and Sari in 2015 have suffered 
from flash floods (Khosravi et al. 2016). 

Therefore, optimal, efficient and proper methods 
should be used to reduce flood damage and losses. In the 

recent years, the use of artificial intelligence (AI) 
methods such as machine learning (Ahmadlou et al. 
2021; Khosravi et al. 2020; Shahabi et al. 2021; Arora et 
al. 2021) has been increased. 

Nghia et al. (2020) have used the CHAID algorithm to 
model flash floods in the Luc Yen area of Yen Bai Province 
in Vietnam, using 10 conditional factors including soil 
type, land cover, lithology, river density, rainfall, 
elevation, topographic wetness index  (TWI), slope, 
aspect, and curvature. (Tehrany et al. 2013)  have also 
used this algorithm to model the Kelantan River Basin in 
northeastern Malaysia by selecting 10 flood factors. 
However, flood modelings using CHAID decision tree 
algorithm does not seem to be widely reported in the 
literature. 

The purpose of this study is the flood modeling of 
Sardabroud watershed in northern Iran using CHAID 
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algorithm to produce a flood risk map and undertake its 
evaluation.  
2. Study area 
 

Sardabroud watershed with an area about 460 Km2 is 
a narrow basins originates from the snowy heights of 
Takht-e-Solimansar at a elevation of 4600 meters. 
Sardabroud watershed is located in the west of 
Mazandaran province, Iran. The elevation of the 
watershed ranges from 4800 to -31 meters and the slope 
ranges from 0 to 78 degrees (Figure 1). The Sardabroud 
river flows through several mountains including Takht-e 
Soleiman and Alam Kooh, to the sea (Figure 1). This 
watershed is one of the tourist attractions places in 
Kelardasht with high average annual rainfall. 
 

 
Figure 1. Study area  
 
 

3. Method 
 

In this study, several influencing factors including 
elevation, slope, rainfall, landuse, lithology, TWI, distance 
to river and NDVI have been extracted and collected for 
flood risk modeling using machine learning. 

The CHAID algorithm process is in descending order 
from top to bottom, dividing large branches into smaller 
branches, which continue to be grouped according to 
specific factors. The CHAID is one of the classification 
decision tree techniques used in regression problems 
(Althuwaynee et al. 2014). CHAID algorithm has a 
number of titles such as automatic interaction detection, 
classification and regression tree (CART) and artificial 
neural network (ANN). CHAID algorithm uses chi-square 
statistics as a criterion for data separation and performs 
dodge separation (Eqs. 1,2, and 3) (Yeon et al. 2010). 
 

𝑋2 =  ∑ ∑
(𝑛𝑖𝑗 − 𝑚𝑖𝑗)2

𝑚𝑖𝑗

𝐼

𝑖=1

𝐽

𝑗=1
 (1) 

 

𝑛𝑖𝑗 =  ∑ 𝑓𝑛𝐼 (𝑥𝑛 = 𝑖 ∩  𝑦𝑛 = 𝑗)
𝑛𝜖𝐷

 (2) 

 

𝑚𝑖𝑗 =  
𝑛𝑖 . 𝑛𝑗

𝑛𝑖𝑗

 (3) 

 
where 𝑛𝑖𝑗 = the observed cells frequency, 

 𝑚𝑖𝑗 = cell frequency for 𝑦𝑛 = 𝑗 and 𝑥𝑛 = 𝑖. 

VIF is a powerful statistical technique that detects a 
strong linear relationship between more than two factors 
in a multiple regression model (Hong et al. 2020). 
Accuracy value (ACC) needs to be determined for models 
accuracy that is calculated based on False Positive (FP), 
True Negative (TN), False Negative (FN) and True 
Positive (TP) (FP = non-flood pixels that are incorrectly 
known as flood pixels, TN = flood pixels that are correctly 
known as non-flood, FN = non-flood pixels that are 
incorrectly known as non-flood pixels and TP = flood 
pixels that are correctly known as flood pixels) (Shahabi 
et al. 2020). 

Therefore, this algorithm has been used for flood risk 
modeling in this study. The research methodology 
proposed in this paper is presented in Figure 2. The 
produced map shows the probability of flooding. 
           
4. Results  
 

The results of calculating VIF (Table  1) for  the 8 
factors considered for flood modeling, shows that 
landuse has the lowest and elevation has the highest VIF. 
Therefore, none of the factors had VIF> 10. Therefore, all 
of the factors are considered for the modeling process. 

Then, out of the total flood pixels, 70% of the data 
have been used for model training and 30% of the data 
employed for the model testing process. The AUC values 
for the testing process of the model are 0.939 (Figure 4). 
 

 
Figure 2. Research methodology 
         

Therefore, according to the flood modeling of this 
watershed with CHAID algorithm, the value of AUC has 
been obtained as 0.939. The Accuracy value of the CHAID 
model for the training and testing process are 0.964 and 
0.882, respectively (Table 2). The map has been 
produced in ArcGIS 10.3 software and illustrated in 
Figure 3. 
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Table 1. multi-collinearity analysis 

Factors VIF 

Elevation 5.38 
Slope 1.89 
Rainfall 1.67 
Distance to river 1.32 
Landuse 1.03 
NDVI 3.67 
Lithology 1.30 
TWI 1.49 

 
Table 2. model performances 

Metrics/Model AUC ACC 

CHAID (training) 0.961 0.964 
CHAID (testing) 0.939 0.882 

           
5. Discussion 
 

In this research, a decision tree-based machine 
learning model (CHAID) has been used to model flood 
risk in Sardabroud watershed, Iran. Elevation, slope, 
landuse, NDVI, TWI, rainfall, lithology and distance to 
river factors were used for the modeling process. 

After performing multi-collinearity analysis using VIF 
methods, the value of VIF factors changes in a range from 
1.03 to 5.38, with the highest and lowest values are 
related to elevation and landuse. Therefore, because VIF 
values are lower than 10, there is no correlation between 
the factors. 

Therefore, the 8 factors considered for the modeling 
process were used. According to Figure 3, it is clear that 
the risk of flood in the north and middle parts of the 
watershed are more than other areas. 
 

 
Figure 3. Flood susceptibility mapping 
 
6. Conclusion  
 

The aim of this study was to consider the factors 
affecting flood risk and to identify the flood susceptible 
zones in Sardabroud watershed, Iran.  

The CHAID employed model is important for future 
smart flood disaster management decisions because it 
provides the basic information for controlling and 
managing flood risk.  

Due to the flood damage to urban and agricultural 
areas, future research needs to focus on selecting and 
adopting effective flood parameters in the area such as 
population density and literacy and their relationship 
with economic processes and other factors affecting 
floods. 

The method adapted in this research can be extended 
to larger watersheds that are at flood risk, and the 
accuracy of the models can be compared and evaluated 
with other basic machine learning models such as 
support vector machine (SVM) and K-nearest neighbor 
(KNN) methods. 
 

 
Figure 4. Plot of the ROC curve 
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