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 Mobile LiDAR systems are distinguished with large and highly accurate point clouds data 
acquisition for road environments. Road features extraction is becoming one of the most 
important applications of LiDAR point cloud, and is used largely in road maintenance and 
autonomous driving vehicles. The main step in Mobile LiDAR processing is point classification 
This classification relies on the geometric definition of the points and their surroundings, as 
well as the classification methods used. The neighbors of each point is helpful to find more 
meaningful information than the raw coordinates. On the other hand, machine learning 
algorithms have proved their efficiency in LiDAR point cloud classification. This research 
compares results of using three machine learning classifiers, namely Random Forest, Gaussian 
Naïve Bayes, and Quadratic Discriminate Analysis along with using three neighborhood search 
methods, namely k nearest neighbors, spherical and cylindrical. A part of the pre-labelled 
benchmark dataset (Paris Lille 3D) with about 98 million points was tested. Results showed 
that the using Random Forest classifer with the cylindirical neighborhood search method 
acheived the highest overall accuracy of 92.39%. 

 
 

1. INTRODUCTION  
 

Laser scanning systems are widely used as remote 
sensing techniques based on Light Detection and Ranging 
(LiDAR). These systems have been involved into 
surveying market, providing high accuracy 
measurements as well as efficient data collection, 
especially in the 3-Dimensional environments. LiDAR 
technology is non-contact active measuring to get 
information of the scanned 3D surfaces with less 
dependence on illuminations. LiDAR scanning systems 
have also the ability to record point cloud actively and 
precisely at a high speed in real time (Pu & Vosselman, 
2009). The rapid acquisition of high 3D information of 
objects has been more realized due to the most recent 
advances in the technology (Yu et al., 2014). 

 3D point clouds could be obtained in precise format 
using one of main laser scanning systems types; 
Airborne, Terrestrial or Mobile (Hyyppä et al., 2013). In 
the past decades, the market has a high demand for 
utilizing data acquired from Mobile Laser Scanning 
(MLS) systems. The applicability of MLS from moving 
platforms allows for the complete coverage of complex 
urban environments. 3D point data acquired from MLS 
systems are distinguished with their high accuracy level 
and points density, with an average of about 1000-2000 

pts./m2. The bottleneck in any work is the transmission 
from field data acquisition to the processing step with a 
large amount of data that sometimes represent 
hindrances and thus need to be managed effectively. As 
MLS systems often provide high dense point clouds, their 
processing will be labor intensive (Guarnieria et al., 
2009), and may last for days to handle those data that 
were collected in a very short time. 

The MLS system consists mainly of a laser scanning 
sensor, global navigation satellite system (GNSS) and 
inertial navigation system (INS) unit. Laser scanning 
sensor is responsible for the emission of laser beams and 
reception the reflected rays. Because the laser beams 
have a constant speed (i.e., speed of light, S) and with 
measuring the time elapsed, t, from the emission and 
reception of the beams using a precise interval timer, the 
distance between the sensor and the object can be 
measured according to the first Newton's rule Equation 
(1). It should be noted that the distance, D, calculated 
using Newton's rule is twice the distance between the 
system and any measured object. 

 
 

D = S*t (1) 
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GNSS is another main component in MLS system. It is 
used to determine the accurate position of the system 
instantly. This would help to geo-reference any 
measured object to the global system supported by the 
GNSS unit. INS has a role to determine the system values 
of roll, pitch and heading, which helps to determine the 
relative position between any scanned object and the 
system at the measurement time.  

There are additional components that could be 
mounted on the system such as digital cameras and 
distance measurement instruments (DMIs). Digital 
cameras are optional choice, and their videos/images are 
not included in the process of LiDAR data except for some 
methods of features extraction or 3D reconstruction that 
integrates the LiDAR point clouds with imagery. DMIs are 
used to continuously measure the distance passed by the 
vehicle. This helps in case of the integration with INS to 
determine the position of the whole system in case of the 
disability of the GNSS unit due to instant interruptions. 

The development in MLS systems is scaled with two 
main topics: how much the accuracy of collected data is 
increased, and the availability of developing software 
packages that make the processing of the point cloud 
easier, faster and more precise. The former is improved 
through the MLS system itself and its internal 
components, either hardware or software. The latter is 
divided into three main steps and they are improved 
individually. The three steps are removal of the outliers 
within the dataset, detection of the required features and 
the modeling of the extracted features to produce CAD 
models. The features’ detection step is still under 
continuous development for the purpose of evaluating its 
level of automation and identifying different features 
simultaneously.  

Automatic 3D point clouds processing is an important 
topic in most cases related to remote sensing, 
photogrammetry and computer vision because of the 
time consumed and cost of user-assisted analysis. 
Current researches aim to decrease the human 
involvement in the point clouds processing. In the past 
years, machine learning classifiers have had a great 
contribution to 3D point clouds processing, and covered 
all types of LiDAR systems; airborne, terrestrial, or 
mobile (Chehata et al., 2009; Mohamed et al., 2021a; 
Nguyen et al., 2020). 

Machine learning (ML) is a subfield related to 
computer science that is mainly concerned with 
constructing useful algorithms which rely on a collection 
of given examples of some phenomenon. ML can also be 
defined as the process of solving a practical problem. This 
is conducted through gathering required dataset, 
algorithmically build a statistical model based on that 
dataset, and the statistical model is somehow expected to 
solve the practical problem (Burkov, 2019). 

Supervised machine learning is one of ML algorithms 
that uses the dataset to produce a model which takes a 
feature vector x as input and output information and 
allows deducing the label for this feature vector (Burkov, 
2019). There are various supervised learning algorithms 
which differ according to their mathematical definition 
such as k Nearest Neighbor, Logistic Regression, Naïve 
Bayes, Discriminant Analysis, Decision Tree, Random 
Forest, Support Vector Machine, and Neural Network. 

Figure 1 shows an example of a supervised learning 
algorithm whereas it predicts a yellow edge boundary 
between two classes (Red and Blue classes) according to 
inputs attributes of X and Y. 

 

 
Figure 1. An example of a supervised learning algorithm 
(Bonaccorso, 2017) 

 

1.1. Mobile LiDAR Data Classification Using Machine 
Learning 

 
ML classifiers require input data that are 

distinguishable to categorize each class. However, MLS 
point cloud in its raw format consisting of 3D coordinates 
(i.e., X, Y and Z) and sometimes intensity values are not 
sufficient for ML to differentiate between different 
classes. Coordinates are meaningless for ML classifiers 
except for Z coordinate which may somehow be used to 
extract some classes such as ground (i.e., the lowest 
points within any point cloud dataset). In addition, 
intensity values may differ for points of same class 
according to weather conditions or how far the point 
from the sensor is.  

Due to the ability of ML classifiers to distinguish 
between multiple classes, most researches that applied 
ML classifiers aimed at multi-classification  (Hackel et al., 
2016; Mohamed et al., 2021b; Weinmann et al., 2013), 
but there were also some researches that focused on one 
class such as rail track detection in (Elberink et al., 2013) 
out of all other classes. Generally, the classification 
process is divided into three steps; neighborhood search 
method, features extraction and ML classifier. 

Neighborhood search method is defined as the 
predetermined scale around each point. The 
neighborhood may take various types according to the 
geometric definition such as K nearest neighbors (KNN), 
spherical and cylindrical neighborhoods as illustrated in 
Figure 2. KNN method is defined as the most nearest k 
number of points to the point of interest x according to 
the Euclidean distance (Linsen & Prautzsch, 2001). The 
determination of how much k neighbors has been studied 
in (Hackel et al., 2016; Weinmann et al., 2013) where a 
fixed number of points for all points was applied. Others 
applied a different and changing k number for each 
individual point according to a specific condition 
(Demantké et al., 2011; Weinmann et al., 2014; 
Weinmann, Jutzi, et al., 2015; Weinmann, Urban, et al., 
2015). 

Spherical neighborhood method of point x is defined 
by a sphere with a radius r and centered with the point of 
interest x (Lee & Schenk, 2002). Cylindrical 
neighborhood is determined by the cylinder centered 
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with the point of interest x, and its neighbors are all 
points within that cylinder. The cylinder is defined with 
a 2D radius r and its height may be a specific value above 
and below the point of interest, or may be infinite (Filin 
& Pfeifer, 2005). This neighborhood step allows getting 
most of common used features in the classification 
process, from Eigenvalues and Eigenvectors derived 
from their covariance matrix, or from heights of the 
neighborhood points. 

Spherical and cylindrical neighborhoods have not 
been widely used in 3D point neighborhood search. (Li et 
al., 2021)  used a spherical neighborhood method around 
the points within 0.5 m radius. (Weinmann et al., 2017) 
used the spherical and cylindrical neighborhood in a 
comparison with KNN in its two ways; fixed and optimal 
k value. They used four individual neighborhoods, 
cylindrical with 1.0 m radius, spherical with 1.0 m radius, 
and two KNN with k = 50 and optimal k of each point 
according to Eigen entropy defined in (Weinmann, Jutzi, 
et al., 2015). Other approaches proposed a multi-scale 
neighborhood with different features extracted from 
different neighborhoods at the same time. (Hackel et al., 
2016) proposed a multi-scale neighborhood using (k = 
10) of KNN. (Blomley et al., 2016) used a cylindrical 
multi-scale neighborhood of radius (1m, 2m, 3m, and 
5m) as well as KNN with the optimal value of k according 
to the Eigen entropy defined by (Weinmann et al., 2014) 
with the normalized Eigenvalues. (Zheng et al., 2017) 
used a cylindrical neighborhood with radius r𝐶  = 0.25 m, 
(Zheng et al., 2018) used other values (0.45, 0.6, 0.75, 0.9, 
1.05) m, but without any significant effect on the results. 
 

 
Figure 2. A definition of neighborhood is presented 
where (a) the cylindrical neighborhood, (b) the spherical 
neighborhood, and (c) the k nearest neighborhood. Also, 
the point in red is the point of interest, and r is the 
predefined radius for the neighborhood. 

 
The second step in the classification process of XYZ 

point cloud is to extract much more meaningful 
information from those data than the XYZ coordinates. 
One of the most used set of features are covariance 
features, those covariance features are derived from the 
covariance matrix of each point's neighborhood (Pauly et 
al., 2003; West et al., 2004). Those features are computed 
using the Eigenvalues (λ1, λ2, 𝑎𝑛𝑑 λ3) of the covariance 
matrix. According to (Weinmann et al., 2013), for a linear 
(1D) structure; λ1 is the largest between the three 
Eigenvalues. For a (2D) planar structure, (λ1 𝑎𝑛𝑑 λ2) are 
much larger than λ3, while a (3D) volumetric structure 
has similar Eigenvalues (Dittrich et al., 2017). In 
(Weinmann et al., 2014; Weinmann, Jutzi, et al., 2015; 

Weinmann, Urban, et al., 2015), they replaced the 
Eigenvalues with their normalized values (e1, e2, 𝑎𝑛𝑑 e3) 
where (e𝑖 = λ𝑖/ ∑ λ𝑖𝑖=1 ).  

Another common set of features is the moment 
features which implemented previously is (Hackel et al., 
2016), those features were derived from the dot product 
of the coordinates’ array and the Eigenvectors of the 
covariance matrix.  (Demantké et al., 2011; Hackel et al., 
2016) had also added another feature which may be 
considered as a covariance feature, namely verticality. 
This feature was derived from the vertical component of 
the normal vector. The Eigenvalues were used in a 
previous work of (Chehata et al., 2009) and (Wang et al., 
2020), where the Eigenvalues were added as features in 
addition to waveform features.  

The last set of features is the height features. These 
features are derived from the Z-coordinate of the points 
within the local neighborhood of each point. (Weinmann 
et al., 2013) used the neighborhood of each point to 
calculate the standard deviation of the points’ heights as 
well as the maximum difference of the heights. (Hackel et 
al., 2016) also used the heights of the points to calculate 
the maximum height difference, the maximum height 
below the point of interest, and the maximum height 
above the point of interest. Another height feature is the 
height above ground, but was used in Airborne LiDAR 
Scanning classification. The definition of the ground was 
set to the lowest point within a cylindrical neighborhood 
according to (Chehata et al., 2009) and (Mallet et al., 
2011). They used a cylindrical neighborhood around the 
point of interest with a 15 m and 20 m radius, 
respectively.  

 
1.2. Research Objectives 

 
This article aims to investigate the effectiveness of 

machine leaning classifiers for the sake of road features 
extraction, also the importance of choosing appropriate 
neighborhood method and its direct impact on the 
classification results. The two main objectives of this 
research are 1) evaluate the effectiveness of using three 
neighborhood selection methods for MLS data and 2) 
evaluate the application of three machine learning 
algorithms for MLS data classification.     

 

2. METHOD 
 

The methodology of this research is divided into four 
stages as shown in Figure 3. First, the pre-processing 
stage which contains data subsampling and data slicing. 
Second, the neighborhood search method to find the 
neighbors of each point, it includes three alternatives 
(section 2.2). Third, geometric features extraction that 
will replace the XYZ coordinates as input to ML 
classifiers. Finally, three ML classifiers are applied to 
learn and classify the dataset (section 2.4).  

 

 
Figure 3. 3D point clouds classification workflow 
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2.1. Pre-processing Stage 

 
2.1.1. Data Subsampling 

 
Due to the high points’ density of MLS systems, data 

processing means time. Hence, different researches 
suggested various scenarios for the reduction of the 
dataset. For instance, (Zheng et al., 2017, 2018) removed 
the ground points as their research’s aim was to classify 
non-ground points. Another research, (Weinmann et al., 
2014), removed any class with points’ count less than 
0.05% of the whole dataset. However, this could result in 
losing significant information of removed points. On the 
other hand, the huge amount of MLS point cloud may be 
more than the amount of information required to detect 
the urban road objects. Thus, removal of some points in 
a specific manner would improve the classification 
processing time, which is a major evaluation factor of any 
method. This is applicable if the reduction in the dataset 
does not harm the information and the classification 
results are acceptable compared to results of the whole 
dataset (Mohamed et al., 2021a).  

Reducing the dataset may be through variant 
manners according to the organization of the dataset and 
the differences in the point density. As much as the 
dataset is organized and equally distributed, the point 
reduction may be more applicable by a high percentage. 
We used the dame subsampling method implemented in 
(Mohamed et al., 2021a), the subsampling was by the 
minimum spacing between points, and the reduction in 
the dataset was by about the half but without low 
reduction in the results, whereas the overall accuracy 
was 92.39% and 90.26% for the full and subsampled 
datasets.  

 
2.1.2. Data Slicing 

 
Figure 4 shows the effect of slicing on finding the 

neighbors of any point within the black points on the left 
side of the dataset. It has no meaning to search for 
neighbors within the whole dataset including the white 
points as there is no way to have neighbors from the 
white points. Therefore, if the search of the 
neighborhood of any point is within a small slice of the 
dataset, the processing time will be more efficient. Slicing 
of the dataset could be by distance or equal number of 
points along the dataset. In this research, we divided the 
dataset into slices with same amount of points along the 
road and added two overlaps before and after each slice 
to best calculate the neighbors of edge points. 

 

 
Figure 4. Data slicing for neighborhood search 

 
 

The disadvantage in the slicing concept is that points 
on the edge will find their neighbors from one side only 
and this may affect the results. The more slices we have, 
the more edges we get, and hence the effect will be 
increased. In order to avoid this effect, each slice will be 
extended with an overlap from each edge to find the 
neighbors of the edge points effectively.  

 
2.2. Neighborhood Search Stage  

 
Neighborhood method is used to find the neighbors of 

any point and derive extract features from its 
surroundings. As aforementioned, there are three 
common types of neighborhood; KNN which is based on 
the Euclidian distance, and spherical and cylindrical 
neighborhoods which are based on a predefined radius. 
The choice between those three types depends on the 
uniformity and points’ density in the used dataset. 
Searching by a fixed radius (i.e., spherical and cylindrical 
neighborhoods) in dataset with uniformly point density 
is usually suitable as it preserves the objects in a fixed 
geometry scale. However, the strongly varying point 
density requires a fixed number of points; hence, the 
KNN is an effective choice (Hackel et al., 2016).  

K nearest neighborhood is determined by the nearest 
(k) points to the point of interest. The change in the 
number of k points by increasing or decreasing has a high 
linearly proportional relation with the processing time. 
In addition, it affects the classification results. More k 
points enhance the results but with more processing 
time. Spherical and cylindrical are determined by a 
radius r. A spherical neighborhood definition is the 
sphere with radius in 3D (r3𝐷) around the query point 
while cylindrical neighborhood is implemented in the 2D 
projection of points neglecting the height of points when 
searching for neighbors. The cylinder contains all points 
around the query point within 2D radius (r2𝐷) above and 
below the point. 

 
2.3. Features Extraction Stage  

 
For each point, we replace its coordinates with three 

sets of features; covariance, moment and height. Those 
features have had the most occurrence in previous 
researches. Figure 5 shows the structure of features 
extraction.    

    

 
Figure 5. workflow of points’ features extraction  
 
 

Point's neighborhood

Covariance Equation

Normalized Eigenvalues

Covariance Features

Eigen vectors

Moment features

Height features
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A total of fifteen features are derived and used in this 
research as listed in Table 1. From the neighborhood of 
each point, the covariance matrix is constructed using the 
three coordinates’ arrays as shown in Equation (2). 

 

C =  
1

𝑛
  ∑ (𝑝𝑖 − �̅�)(𝑝𝑖 − �̅�)𝑇

𝑖∈𝑁  (2) 

 
Where n is the number of points within the 

neighborhood of each point x, 𝑝𝑖is representing each 
point in the neighborhood, �̅� is the centroid of n points in 
the neighborhood. 

 
The result of the covariance matrix is three 

Eigenvalues (λ1, λ2, 𝑎𝑛𝑑 λ3) and three 
Eigenvectors(𝑣1, 𝑣2, 𝑎𝑛𝑑 𝑣3). The first subset of features, 
covariance features, are derived from the normalized 
Eigenvalues (e1, e2, 𝑎𝑛𝑑 e3) where e𝑖 = λi/(λ1 + λ2 +
λ3). The covariance features are similar to what have 
been previously used in the research of (Weinmann, 
Urban, et al., 2015), except for the “Sum” feature that is 
derived from the summation of the three Eigenvalues, 
not the normalized ones. Another feature is added to the 
covariance set is the verticality which has been driven 
before in the research of (Demantké et al., 2011). 

The second set of features (moment features) were 
first used in (Hackel et al., 2016). Those features are 
driven from the dot product of coordinates’ arrays and 
the first two Eigenvectors. Those moment features are 
helpful in identifying the crease edges as well as 
occlusion boundaries. Height features are also used in 
this research. Those features include Δz: the max 
difference in height between all points within the 
neighborhood and σz: the standard deviation of z -
coordinate of points. 

 
Table 1. Geometric features  

Items Feature Formula 

C
o

v
ar

ia
n

ce
 f

ea
tu

re
s 

Lλ: Linearity (e1 −  e2)/e1 

Pλ: Planarity (e2 −  e3)/e1 

Sλ: Scattering e3/e1 

Oλ:Omni variance √e1e2e3
3  

Aλ: Anisotropy (e1 −  e3)/e1 

Eλ: Eigen entropy − ∑ eiln (ei)

3

i=1

 

Cλ:Change of curvature e3 

∑λ: Sum λ1 + λ2 + λ3 

V: Verticality 1 − ⟨(0,0,1), 𝑣3⟩ 

M
o

m
en

t 
fe

at
u

re
s 

1st order, 1st axis  
(f11) 

∑⟨(pi − p), 𝑣1⟩

i ∈p

 

1st order, 2nd axis 
 (f22) 

∑⟨(pi − p), 𝑣2⟩

i ∈p

 

2nd order, 1st axis  
(s11) 

∑⟨(pi − p), 𝑣1⟩
2

i ∈p

 

2nd order, 2nd axis  
(s22) 

∑⟨(pi − p), 𝑣2⟩
2

i ∈p

 

H
ei

gh
t 

F
ea

tu
re

s 𝛥𝑧 Zmax −  Zmin 

𝜎𝑧 
Standard deviation of z 
coordinate within the 

neighborhood 

2.4. Machine Learning Classification Stage 
 

Machine Learning has its ability to differentiate 
between different classes without any preprogramming. 
The results of any classification vary with respect to 
different classifiers and their suitability with the used 
dataset and given features. Three ML classifiers are 
evaluated in this research, including Random forest (RF), 
Gaussian Naïve Bayes (GNB), and Quadratic Discriminate 
Analysis (QDA). 

 
2.4.1. Random Forest 
 

RF classifier is an ensemble algorithm containing 
multiple tree decisions (Breiman, 2001). It combines 
multiple weak learners for the sake of a stronger one 
(Weinmann, Urban, et al., 2015). For each decision tree, 
the classifier makes nested relations between the input 
features and the output class according to specific 
conditions in the inputs. The more estimators (decision 
tress) are, the better results will be but with an increase 
in processing time. The optimization of best fitted RF 
model depends on various parameters of the algorithm 
that should be well tuned. In addition to the number of 
trees (estimators), there are other important parameters 
such as ‘max_depth’ and ‘min_samples_split’ parameters, 
both determine how far each tree will go down.  

The mechanism of RF is simplified as following. For 
each decision tree; a sample of points represented in its 
geometric features are trained into that tree to find the 
different relations between points’ features and 
corresponding outputs. This process is repeated for 
other decision trees used. The process of classifying any 
unknown point is to implement that point in each 
decision tree to reach a class of that tree. A voting step is 
then applied between the results of all trees to classify 
that point to the most occurrence class among the trees.  

 
2.4.2. Gaussian Naïve Bayes 

 
Naïve Bayes classifiers are simple probabilistic 

classifiers. They are based on the Bayes’ theorem but 
with strong independence assumptions inside the 
features. GNB is a variant of Naïve Bayes that follows 
Gaussian normal distribution and supports continuous 
data. (Bishop, 2006). The main steps of GNB are 
calculating the probability of each class which equals to 
the portion of class’ points in the whole dataset, and 
constructing a Gaussian distribution of each class for 
each feature. To classify any unknown point, a value is 
calculated of the point for each class according to 
Equation (3), and the point is classified to the class of 
highest value. 

 

log 𝑃(𝑐𝑙𝑎𝑠𝑠𝑖) + ∑ log 𝐿(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗|𝑐𝑙𝑎𝑠𝑠𝑖)

𝑗 ∈𝐹

 (3) 

 
Where 𝑃(𝑐𝑙𝑎𝑠𝑠𝑖) is the probability of each class, and 

𝐿(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗|𝑐𝑙𝑎𝑠𝑠𝑖) is the likelihood of each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗  of 

𝑐𝑙𝑎𝑠𝑠𝑖 , and F is the number of features. 
 
 



Advanced LiDAR – 2022; 2(1); 01-09 

 

  6  

 

2.4.3. Quadratic Discriminate Analysis 
 
A quadratic classifier is a statistical classifier that uses 

a quadratic decision surface to separate measurements 
of two or more classes of objects or events (Bishop, 
2006). The algorithm represents the points according to 
their attributes (features) on multi-dimensional graph. 
Then, it builds a quadratic boundary between classes that 
enclose each class entire a single boundary. To classify 
any point, it is located on the graph according to its 
features and is classified to the class boundary it is inside. 

 
3. Study Area and Dataset  

 

To evaluate the proposed methodology, we used a 
pre-labelled benchmark dataset (Paris Lille 3D). It is a 
part of NPM3D Benchmark Suite research project 
(Roynard et al., 2018).  It was acquired using a MLS 
system of robotics center of Mines Paris Tech (L3D2). 
The dataset consists of two parts; a longitudinal section 
of about 1500 m length with about 98 million points in 
Lille and another part in Paris with 450 length and about 
45 million points.  

 

 
Figure 6. Paris-Lille-3D dataset (Lille Part) 

 
The dataset contains mainly nine coarse classes in 

addition to some unclassified points, the classes are 
ground, building, pole, bollard, trashcan, barrier, 
pedestrian, car and vegetation. Figure 7 shows the data 
portion of different classes, some classes (both ground 
and building represent about 90% of the dataset)   

 

 
Figure 7. Dataset portion of classes 

 
 
 

4. RESULTS  
 

This research aimed at the comparison between 
three ML classifiers with three different neighborhood 
methods.  According to (Zheng et al., 2017, 2018) ,the 
change and the increase in the radius of the cylinder did 
not have a remarkable effect, hence we used the radius of 
the cylinder to equal 0.20m, and similarly we choose the 
sphere radius to be 0.20m. For the kNN method, we chose 
k = 10, as in the research of (Weinmann et al., 2015), the 
most occurrence value as an optimal value. For each 
point in the dataset, its neighbors were defined and the 
geometric features, were derived as presented in Table 1.  

The dataset was divided into two equal parts after 
replacing the coordinates of each point with their 
corresponding extracted geometric features. The two 
parts are training/validation part as well as the testing 
part. The first part was divided into four partitions, from 
which four ML models were created to find out the best 
fitting model according to the overall accuracy, after that 
our method could be evaluated with the remaining 
testing part. This procedure was implemented in all our 
classification scenarios whether the change in the 
classifier or the neighbourhood search method. 

Overall accuracy was used as a primary score for the 
models as shown in Figure 8. In the three neighborhood 
methods, cylindrical neighborhood was the best between 
the three neighborhood methods, regardless the ML 
classifier used. The overall accuracy of the cylindrical 
method for the RF, GNB and QDA was 92.39%, 78.47% 
and 78.18%, respectively. On the other hand, a great 
difference does exist between RF and other classifiers 
which makes RF is the most suitable classifier for the 
tested dataset. 

 

 
Figure 8. Overall accuracy percent of RF, GNB, and QDA 
for KNN, spherical, and cylindrical neighborhood. 

 
Other scores, including precision, recall and f1-score 

were used to individually evaluate the results of each 
class. Mobile LiDAR point clouds data of road 
environments are usually imbalanced, and two or three 
classes may consist more than 90% of the whole dataset. 
Consequently, any ML model may be confused and tend 
to classify most of the points to the major class(s). As 
shown in Figure 7, the ground and building classes 
contain about 90% of the dataset, whereas the ML 
classifier could classify the whole points to one of these 
two classes, and hence the overall accuracy could reach 
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up to 90% but with misleading classification. Therefore, 
the role of using precision, recall and f1-score is to 
evaluate the classifiers with datasets that have low 
percentages of classes. 

Figure 9 shows the calculated precision, recall and f1 
score of each class using to different classifiers and 
neighborhood search methods. The ground and building 
classes achieved high results in the three classifiers. This 
comes from the large amount of points in the dataset of 
both classes. Therefore, any classifier will easily detect 
classes with large portions such as ground and building, 
and hence they could not be a measure for a good 
classifier. For instance, the precision of ground class was 
98.11%, 96.66% and 97.68%, while the recall was 
91.35%, 88.1% and 87.95% and f1-score was 94.61%, 
92.18 and 92.56% for RF, GNB and QDA, respectively. For 
building class, the precision was 95.60%, 76.27% and 
81.21%, while the recall was 92.65%, 90.25% and 
87.14% and f1-score was 94.1%, 82.67 and 84.07% for 
RF, GNB and QDA, respectively. 

On the other hand, the other classes are varying in 
their classification results, between the three classifiers; 
the RF revealed the highest scores between the three 
classifiers for detecting those low portion classes. 
Generally, the results showed that RF is much more 
effective than other classifiers. RF is also suitable to 
classes with less number of points such as poles, barriers, 
and trashcans. Therefore, classes with variant geometric 
characteristics require large scale of features to best 
distinguish between them. However, not all classifiers 
are able to handle all classes with a huge number of 
samples as well as many features. GNB and QDA 
classifiers were not able to achieve high scores for all 
classes. Only ground and building classes revealed close 
results for different classifiers. Ground and building were 
clearly distinguished due to their geometric shapes (i.e., 
2D planes) which were determined using Verticality 
feature. Thus, this is helpful for any classifier to best find 
most of points that belong to those classes. 

 

 
 

 
 

 
Figure 9. Classification results of RF, GNB, and QDA. 

 
The classes could represent an obstacle and mislead 

the classification process. It may be a class which 
misleads the algorithm for the purpose of finding other 
classes. For example in Figure 10, the white points were 
wrongly classified due to the similar geometric 
properties with other classes.  

Bottom base of vegetation (class 9 in our dataset) is 
an example, as nearly all bottom bases were classified 
wrongly. The similarity between points in different 
classes makes it not trivial task to classify those points. 
Literality, points on tree base are very similar to ground 
and curb points. They all have the same orientation and 
nearly the same height but different classes, and that 
make it difficult for any classifier. 

 

 

 
Figure 10. Example of wrongly classified points 

0

20

40

60

80

100

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

kNN SphericalCylindrical

O
ve

ra
ll 

ac
cu

ra
cy

 %

Ground

Building

Pole

Bollard

Trash can

Barrier

Pedestrian

Car

0

20

40

60

80

100

P
re

ci
si

o
n

F1
-s

co
re

R
e

ca
ll

P
re

ci
si

o
n

F1
-s

co
re

kNN SphericalCylindrical

O
ve

ra
ll 

ac
cu

ra
cy

 % Ground

Building

Pole

Bollard

Trash can

Barrier

Pedestrian

0

20

40

60

80

100

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

P
re

ci
si

o
n

R
e

ca
ll

F1
-s

co
re

kNN SphericalCylindrical

O
ve

ra
ll 

ac
cu

ra
cy

 %

Ground

Building

Pole

Bollard

Trash can

Barrier

Pedestrian

Car



Advanced LiDAR – 2022; 2(1); 01-09 

 

  8  

 

5. CONCLUSION  
 

Nowadays, the growth in the utilization of mobile 
LiDAR scanning systems is very rapid in many road 
corridors’ applications. They have an advantage of there 
is no required direct contact with any road features in the 
data acquisition. That makes the MLS systems preferable 
for applications such as infrastructure and surveying 
assets. They capture huge amount of point clouds which 
describe road scenes with high details. The detection of 
different road features such as light poles, curb, and road 
signs from MLS point cloud is important to be automatic. 
The extracted information could be used in various 
applications such as quantity and volume surveys, right-
of-way asset inventory and GIS applications. 

In this research, three neighborhood search methods 
were studied and compared, namely KNN, spherical and 
cylindrical neighborhoods. Their results were varying 
and have revealed that cylindrical neighborhood method 
was the most suitable for the tested dataset. Although the 
overall accuracy of both the spherical and cylindrical was 
close using different classifiers with imbalanced dataset, 
the overall accuracy could not be a final judgment. 
However, and according to precision, recall and f1-score, 
the cylindrical neighborhood method was much more 
effective than the spherical one. 

ML classifiers are various and differ in their 
mathematical models. According to the case study and 
type of dataset, the appropriate classifier could be 
selected. Three ML were applied for road features’ 
classification from mobile LIDAR dataset to evaluate 
which classifier is more suitable. Three models were 
trained on the dataset using the three classifiers and their 
overall accuracy were 92.39%, 78.47% and 78.18% for 
RF, GNB and QDA, respectively with cylindrical 
neighborhood method. From the overall accuracy and the 
detailed scores (precision, recall and f1-score), the RF 
was the most suitable for the classification process. In 
addition, RF achieved high scores for each class including 
classes with low portion while those classes may be 
considered non-existent for the other two classifiers due 
to their very low scores. 
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