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 Mobile LiDAR systems are distinguished with large and highly accurate point clouds data 
acquisition for road environments. Road features extraction is becoming one of the most 
important applications of LiDAR point cloud, and is used largely in road maintenance and 
autonomous driving vehicles. The main step in Mobile LiDAR processing is point classification 
This classification relies on the geometric definition of the points and their surroundings, as 
well as the classification methods used. The neighbors of each point is helpful to find more 
meaningful information than the raw coordinates. On the other hand, machine learning 
algorithms have proved their efficiency in LiDAR point cloud classification. This research 
compares results of using three machine learning classifiers, namely Random Forest, Gaussian 
Naïve Bayes, and Quadratic Discriminate Analysis along with using three neighborhood search 
methods, namely k nearest neighbors, spherical and cylindrical. A part of the pre-labelled 
benchmark dataset (Paris Lille 3D) with about 98 million points was tested. Results showed 
that the using Random Forest classifer with the cylindirical neighborhood search method 
acheived the highest overall accuracy of 92.39%. 

 
 

1. INTRODUCTION  
 

Laser scanning systems are widely used as remote 
sensing techniques based on Light Detection and Ranging 
(LiDAR). These systems have been involved into 
surveying market, providing high accuracy 
measurements as well as efficient data collection, 
especially in the 3-Dimensional environments. LiDAR 
technology is non-contact active measuring to get 
information of the scanned 3D surfaces with less 
dependence on illuminations. LiDAR scanning systems 
have also the ability to record point cloud actively and 
precisely at a high speed in real time (Pu & Vosselman, 
2009). The rapid acquisition of high 3D information of 
objects has been more realized due to the most recent 
advances in the technology (Yu et al., 2014). 

 3D point clouds could be obtained in precise format 
using one of main laser scanning systems types; 
Airborne, Terrestrial or Mobile (Hyyppä et al., 2013). In 
the past decades, the market has a high demand for 
utilizing data acquired from Mobile Laser Scanning 
(MLS) systems. The applicability of MLS from moving 
platforms allows for the complete coverage of complex 
urban environments. 3D point data acquired from MLS 
systems are distinguished with their high accuracy level 
and points density, with an average of about 1000-2000 

pts./m2. The bottleneck in any work is the transmission 
from field data acquisition to the processing step with a 
large amount of data that sometimes represent 
hindrances and thus need to be managed effectively. As 
MLS systems often provide high dense point clouds, their 
processing will be labor intensive (Guarnieria et al., 
2009), and may last for days to handle those data that 
were collected in a very short time. 

The MLS system consists mainly of a laser scanning 
sensor, global navigation satellite system (GNSS) and 
inertial navigation system (INS) unit. Laser scanning 
sensor is responsible for the emission of laser beams and 
reception the reflected rays. Because the laser beams 
have a constant speed (i.e., speed of light, S) and with 
measuring the time elapsed, t, from the emission and 
reception of the beams using a precise interval timer, the 
distance between the sensor and the object can be 
measured according to the first Newton's rule Equation 
(1). It should be noted that the distance, D, calculated 
using Newton's rule is twice the distance between the 
system and any measured object. 

 
 

D = S*t (1) 
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GNSS is another main component in MLS system. It is 
used to determine the accurate position of the system 
instantly. This would help to geo-reference any 
measured object to the global system supported by the 
GNSS unit. INS has a role to determine the system values 
of roll, pitch and heading, which helps to determine the 
relative position between any scanned object and the 
system at the measurement time.  

There are additional components that could be 
mounted on the system such as digital cameras and 
distance measurement instruments (DMIs). Digital 
cameras are optional choice, and their videos/images are 
not included in the process of LiDAR data except for some 
methods of features extraction or 3D reconstruction that 
integrates the LiDAR point clouds with imagery. DMIs are 
used to continuously measure the distance passed by the 
vehicle. This helps in case of the integration with INS to 
determine the position of the whole system in case of the 
disability of the GNSS unit due to instant interruptions. 

The development in MLS systems is scaled with two 
main topics: how much the accuracy of collected data is 
increased, and the availability of developing software 
packages that make the processing of the point cloud 
easier, faster and more precise. The former is improved 
through the MLS system itself and its internal 
components, either hardware or software. The latter is 
divided into three main steps and they are improved 
individually. The three steps are removal of the outliers 
within the dataset, detection of the required features and 
the modeling of the extracted features to produce CAD 
models. The features’ detection step is still under 
continuous development for the purpose of evaluating its 
level of automation and identifying different features 
simultaneously.  

Automatic 3D point clouds processing is an important 
topic in most cases related to remote sensing, 
photogrammetry and computer vision because of the 
time consumed and cost of user-assisted analysis. 
Current researches aim to decrease the human 
involvement in the point clouds processing. In the past 
years, machine learning classifiers have had a great 
contribution to 3D point clouds processing, and covered 
all types of LiDAR systems; airborne, terrestrial, or 
mobile (Chehata et al., 2009; Mohamed et al., 2021a; 
Nguyen et al., 2020). 

Machine learning (ML) is a subfield related to 
computer science that is mainly concerned with 
constructing useful algorithms which rely on a collection 
of given examples of some phenomenon. ML can also be 
defined as the process of solving a practical problem. This 
is conducted through gathering required dataset, 
algorithmically build a statistical model based on that 
dataset, and the statistical model is somehow expected to 
solve the practical problem (Burkov, 2019). 

Supervised machine learning is one of ML algorithms 
that uses the dataset to produce a model which takes a 
feature vector x as input and output information and 
allows deducing the label for this feature vector (Burkov, 
2019). There are various supervised learning algorithms 
which differ according to their mathematical definition 
such as k Nearest Neighbor, Logistic Regression, Naïve 
Bayes, Discriminant Analysis, Decision Tree, Random 
Forest, Support Vector Machine, and Neural Network. 

Figure 1 shows an example of a supervised learning 
algorithm whereas it predicts a yellow edge boundary 
between two classes (Red and Blue classes) according to 
inputs attributes of X and Y. 

 

 
Figure 1. An example of a supervised learning algorithm 
(Bonaccorso, 2017) 

 

1.1. Mobile LiDAR Data Classification Using Machine 
Learning 

 
ML classifiers require input data that are 

distinguishable to categorize each class. However, MLS 
point cloud in its raw format consisting of 3D coordinates 
(i.e., X, Y and Z) and sometimes intensity values are not 
sufficient for ML to differentiate between different 
classes. Coordinates are meaningless for ML classifiers 
except for Z coordinate which may somehow be used to 
extract some classes such as ground (i.e., the lowest 
points within any point cloud dataset). In addition, 
intensity values may differ for points of same class 
according to weather conditions or how far the point 
from the sensor is.  

Due to the ability of ML classifiers to distinguish 
between multiple classes, most researches that applied 
ML classifiers aimed at multi-classification  (Hackel et al., 
2016; Mohamed et al., 2021b; Weinmann et al., 2013), 
but there were also some researches that focused on one 
class such as rail track detection in (Elberink et al., 2013) 
out of all other classes. Generally, the classification 
process is divided into three steps; neighborhood search 
method, features extraction and ML classifier. 

Neighborhood search method is defined as the 
predetermined scale around each point. The 
neighborhood may take various types according to the 
geometric definition such as K nearest neighbors (KNN), 
spherical and cylindrical neighborhoods as illustrated in 
Figure 2. KNN method is defined as the most nearest k 
number of points to the point of interest x according to 
the Euclidean distance (Linsen & Prautzsch, 2001). The 
determination of how much k neighbors has been studied 
in (Hackel et al., 2016; Weinmann et al., 2013) where a 
fixed number of points for all points was applied. Others 
applied a different and changing k number for each 
individual point according to a specific condition 
(Demantké et al., 2011; Weinmann et al., 2014; 
Weinmann, Jutzi, et al., 2015; Weinmann, Urban, et al., 
2015). 

Spherical neighborhood method of point x is defined 
by a sphere with a radius r and centered with the point of 
interest x (Lee & Schenk, 2002). Cylindrical 
neighborhood is determined by the cylinder centered 
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with the point of interest x, and its neighbors are all 
points within that cylinder. The cylinder is defined with 
a 2D radius r and its height may be a specific value above 
and below the point of interest, or may be infinite (Filin 
& Pfeifer, 2005). This neighborhood step allows getting 
most of common used features in the classification 
process, from Eigenvalues and Eigenvectors derived 
from their covariance matrix, or from heights of the 
neighborhood points. 

Spherical and cylindrical neighborhoods have not 
been widely used in 3D point neighborhood search. (Li et 
al., 2021)  used a spherical neighborhood method around 
the points within 0.5 m radius. (Weinmann et al., 2017) 
used the spherical and cylindrical neighborhood in a 
comparison with KNN in its two ways; fixed and optimal 
k value. They used four individual neighborhoods, 
cylindrical with 1.0 m radius, spherical with 1.0 m radius, 
and two KNN with k = 50 and optimal k of each point 
according to Eigen entropy defined in (Weinmann, Jutzi, 
et al., 2015). Other approaches proposed a multi-scale 
neighborhood with different features extracted from 
different neighborhoods at the same time. (Hackel et al., 
2016) proposed a multi-scale neighborhood using (k = 
10) of KNN. (Blomley et al., 2016) used a cylindrical 
multi-scale neighborhood of radius (1m, 2m, 3m, and 
5m) as well as KNN with the optimal value of k according 
to the Eigen entropy defined by (Weinmann et al., 2014) 
with the normalized Eigenvalues. (Zheng et al., 2017) 
used a cylindrical neighborhood with radius r𝐶  = 0.25 m, 
(Zheng et al., 2018) used other values (0.45, 0.6, 0.75, 0.9, 
1.05) m, but without any significant effect on the results. 
 

 
Figure 2. A definition of neighborhood is presented 
where (a) the cylindrical neighborhood, (b) the spherical 
neighborhood, and (c) the k nearest neighborhood. Also, 
the point in red is the point of interest, and r is the 
predefined radius for the neighborhood. 

 
The second step in the classification process of XYZ 

point cloud is to extract much more meaningful 
information from those data than the XYZ coordinates. 
One of the most used set of features are covariance 
features, those covariance features are derived from the 
covariance matrix of each point's neighborhood (Pauly et 
al., 2003; West et al., 2004). Those features are computed 
using the Eigenvalues (λ1, λ2, 𝑎𝑛𝑑 λ3) of the covariance 
matrix. According to (Weinmann et al., 2013), for a linear 
(1D) structure; λ1 is the largest between the three 
Eigenvalues. For a (2D) planar structure, (λ1 𝑎𝑛𝑑 λ2) are 
much larger than λ3, while a (3D) volumetric structure 
has similar Eigenvalues (Dittrich et al., 2017). In 
(Weinmann et al., 2014; Weinmann, Jutzi, et al., 2015; 

Weinmann, Urban, et al., 2015), they replaced the 
Eigenvalues with their normalized values (e1, e2, 𝑎𝑛𝑑 e3) 
where (e𝑖 = λ𝑖/ ∑ λ𝑖𝑖=1 ).  

Another common set of features is the moment 
features which implemented previously is (Hackel et al., 
2016), those features were derived from the dot product 
of the coordinates’ array and the Eigenvectors of the 
covariance matrix.  (Demantké et al., 2011; Hackel et al., 
2016) had also added another feature which may be 
considered as a covariance feature, namely verticality. 
This feature was derived from the vertical component of 
the normal vector. The Eigenvalues were used in a 
previous work of (Chehata et al., 2009) and (Wang et al., 
2020), where the Eigenvalues were added as features in 
addition to waveform features.  

The last set of features is the height features. These 
features are derived from the Z-coordinate of the points 
within the local neighborhood of each point. (Weinmann 
et al., 2013) used the neighborhood of each point to 
calculate the standard deviation of the points’ heights as 
well as the maximum difference of the heights. (Hackel et 
al., 2016) also used the heights of the points to calculate 
the maximum height difference, the maximum height 
below the point of interest, and the maximum height 
above the point of interest. Another height feature is the 
height above ground, but was used in Airborne LiDAR 
Scanning classification. The definition of the ground was 
set to the lowest point within a cylindrical neighborhood 
according to (Chehata et al., 2009) and (Mallet et al., 
2011). They used a cylindrical neighborhood around the 
point of interest with a 15 m and 20 m radius, 
respectively.  

 
1.2. Research Objectives 

 
This article aims to investigate the effectiveness of 

machine leaning classifiers for the sake of road features 
extraction, also the importance of choosing appropriate 
neighborhood method and its direct impact on the 
classification results. The two main objectives of this 
research are 1) evaluate the effectiveness of using three 
neighborhood selection methods for MLS data and 2) 
evaluate the application of three machine learning 
algorithms for MLS data classification.     

 

2. METHOD 
 

The methodology of this research is divided into four 
stages as shown in Figure 3. First, the pre-processing 
stage which contains data subsampling and data slicing. 
Second, the neighborhood search method to find the 
neighbors of each point, it includes three alternatives 
(section 2.2). Third, geometric features extraction that 
will replace the XYZ coordinates as input to ML 
classifiers. Finally, three ML classifiers are applied to 
learn and classify the dataset (section 2.4).  

 

 
Figure 3. 3D point clouds classification workflow 



Advanced LiDAR – 2022; 2(1); 01-09 

 

  4  

 

2.1. Pre-processing Stage 

 
2.1.1. Data Subsampling 

 
Due to the high points’ density of MLS systems, data 

processing means time. Hence, different researches 
suggested various scenarios for the reduction of the 
dataset. For instance, (Zheng et al., 2017, 2018) removed 
the ground points as their research’s aim was to classify 
non-ground points. Another research, (Weinmann et al., 
2014), removed any class with points’ count less than 
0.05% of the whole dataset. However, this could result in 
losing significant information of removed points. On the 
other hand, the huge amount of MLS point cloud may be 
more than the amount of information required to detect 
the urban road objects. Thus, removal of some points in 
a specific manner would improve the classification 
processing time, which is a major evaluation factor of any 
method. This is applicable if the reduction in the dataset 
does not harm the information and the classification 
results are acceptable compared to results of the whole 
dataset (Mohamed et al., 2021a).  

Reducing the dataset may be through variant 
manners according to the organization of the dataset and 
the differences in the point density. As much as the 
dataset is organized and equally distributed, the point 
reduction may be more applicable by a high percentage. 
We used the dame subsampling method implemented in 
(Mohamed et al., 2021a), the subsampling was by the 
minimum spacing between points, and the reduction in 
the dataset was by about the half but without low 
reduction in the results, whereas the overall accuracy 
was 92.39% and 90.26% for the full and subsampled 
datasets.  

 
2.1.2. Data Slicing 

 
Figure 4 shows the effect of slicing on finding the 

neighbors of any point within the black points on the left 
side of the dataset. It has no meaning to search for 
neighbors within the whole dataset including the white 
points as there is no way to have neighbors from the 
white points. Therefore, if the search of the 
neighborhood of any point is within a small slice of the 
dataset, the processing time will be more efficient. Slicing 
of the dataset could be by distance or equal number of 
points along the dataset. In this research, we divided the 
dataset into slices with same amount of points along the 
road and added two overlaps before and after each slice 
to best calculate the neighbors of edge points. 

 

 
Figure 4. Data slicing for neighborhood search 

 
 

The disadvantage in the slicing concept is that points 
on the edge will find their neighbors from one side only 
and this may affect the results. The more slices we have, 
the more edges we get, and hence the effect will be 
increased. In order to avoid this effect, each slice will be 
extended with an overlap from each edge to find the 
neighbors of the edge points effectively.  

 
2.2. Neighborhood Search Stage  

 
Neighborhood method is used to find the neighbors of 

any point and derive extract features from its 
surroundings. As aforementioned, there are three 
common types of neighborhood; KNN which is based on 
the Euclidian distance, and spherical and cylindrical 
neighborhoods which are based on a predefined radius. 
The choice between those three types depends on the 
uniformity and points’ density in the used dataset. 
Searching by a fixed radius (i.e., spherical and cylindrical 
neighborhoods) in dataset with uniformly point density 
is usually suitable as it preserves the objects in a fixed 
geometry scale. However, the strongly varying point 
density requires a fixed number of points; hence, the 
KNN is an effective choice (Hackel et al., 2016).  

K nearest neighborhood is determined by the nearest 
(k) points to the point of interest. The change in the 
number of k points by increasing or decreasing has a high 
linearly proportional relation with the processing time. 
In addition, it affects the classification results. More k 
points enhance the results but with more processing 
time. Spherical and cylindrical are determined by a 
radius r. A spherical neighborhood definition is the 
sphere with radius in 3D (r3𝐷) around the query point 
while cylindrical neighborhood is implemented in the 2D 
projection of points neglecting the height of points when 
searching for neighbors. The cylinder contains all points 
around the query point within 2D radius (r2𝐷) above and 
below the point. 

 
2.3. Features Extraction Stage  

 
For each point, we replace its coordinates with three 

sets of features; covariance, moment and height. Those 
features have had the most occurrence in previous 
researches. Figure 5 shows the structure of features 
extraction.    

    

 
Figure 5. workflow of points’ features extraction  
 
 

Point's neighborhood

Covariance Equation

Normalized Eigenvalues

Covariance Features

Eigen vectors

Moment features

Height features
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A total of fifteen features are derived and used in this 
research as listed in Table 1. From the neighborhood of 
each point, the covariance matrix is constructed using the 
three coordinates’ arrays as shown in Equation (2). 

 

C =  
1

𝑛
  ∑ (𝑝𝑖 − �̅�)(𝑝𝑖 − �̅�)𝑇

𝑖∈𝑁  (2) 

 
Where n is the number of points within the 

neighborhood of each point x, 𝑝𝑖is representing each 
point in the neighborhood, �̅� is the centroid of n points in 
the neighborhood. 

 
The result of the covariance matrix is three 

Eigenvalues (λ1, λ2, 𝑎𝑛𝑑 λ3) and three 
Eigenvectors(𝑣1, 𝑣2, 𝑎𝑛𝑑 𝑣3). The first subset of features, 
covariance features, are derived from the normalized 
Eigenvalues (e1, e2, 𝑎𝑛𝑑 e3) where e𝑖 = λi/(λ1 + λ2 +
λ3). The covariance features are similar to what have 
been previously used in the research of (Weinmann, 
Urban, et al., 2015), except for the “Sum” feature that is 
derived from the summation of the three Eigenvalues, 
not the normalized ones. Another feature is added to the 
covariance set is the verticality which has been driven 
before in the research of (Demantké et al., 2011). 

The second set of features (moment features) were 
first used in (Hackel et al., 2016). Those features are 
driven from the dot product of coordinates’ arrays and 
the first two Eigenvectors. Those moment features are 
helpful in identifying the crease edges as well as 
occlusion boundaries. Height features are also used in 
this research. Those features include Δz: the max 
difference in height between all points within the 
neighborhood and σz: the standard deviation of z -
coordinate of points. 

 
Table 1. Geometric features  

Items Feature Formula 

C
o

v
ar

ia
n

ce
 f

ea
tu

re
s 

Lλ: Linearity (e1 −  e2)/e1 

Pλ: Planarity (e2 −  e3)/e1 

Sλ: Scattering e3/e1 

Oλ:Omni variance √e1e2e3
3  

Aλ: Anisotropy (e1 −  e3)/e1 

Eλ: Eigen entropy − ∑ eiln (ei)

3

i=1

 

Cλ:Change of curvature e3 

∑λ: Sum λ1 + λ2 + λ3 

V: Verticality 1 − ⟨(0,0,1), 𝑣3⟩ 

M
o

m
en

t 
fe

at
u

re
s 

1st order, 1st axis  
(f11) 

∑⟨(pi − p), 𝑣1⟩

i ∈p

 

1st order, 2nd axis 
 (f22) 

∑⟨(pi − p), 𝑣2⟩

i ∈p

 

2nd order, 1st axis  
(s11) 

∑⟨(pi − p), 𝑣1⟩
2

i ∈p

 

2nd order, 2nd axis  
(s22) 

∑⟨(pi − p), 𝑣2⟩
2

i ∈p

 

H
ei

gh
t 

F
ea

tu
re

s 𝛥𝑧 Zmax −  Zmin 

𝜎𝑧 
Standard deviation of z 
coordinate within the 

neighborhood 

2.4. Machine Learning Classification Stage 
 

Machine Learning has its ability to differentiate 
between different classes without any preprogramming. 
The results of any classification vary with respect to 
different classifiers and their suitability with the used 
dataset and given features. Three ML classifiers are 
evaluated in this research, including Random forest (RF), 
Gaussian Naïve Bayes (GNB), and Quadratic Discriminate 
Analysis (QDA). 

 
2.4.1. Random Forest 
 

RF classifier is an ensemble algorithm containing 
multiple tree decisions (Breiman, 2001). It combines 
multiple weak learners for the sake of a stronger one 
(Weinmann, Urban, et al., 2015). For each decision tree, 
the classifier makes nested relations between the input 
features and the output class according to specific 
conditions in the inputs. The more estimators (decision 
tress) are, the better results will be but with an increase 
in processing time. The optimization of best fitted RF 
model depends on various parameters of the algorithm 
that should be well tuned. In addition to the number of 
trees (estimators), there are other important parameters 
such as ‘max_depth’ and ‘min_samples_split’ parameters, 
both determine how far each tree will go down.  

The mechanism of RF is simplified as following. For 
each decision tree; a sample of points represented in its 
geometric features are trained into that tree to find the 
different relations between points’ features and 
corresponding outputs. This process is repeated for 
other decision trees used. The process of classifying any 
unknown point is to implement that point in each 
decision tree to reach a class of that tree. A voting step is 
then applied between the results of all trees to classify 
that point to the most occurrence class among the trees.  

 
2.4.2. Gaussian Naïve Bayes 

 
Naïve Bayes classifiers are simple probabilistic 

classifiers. They are based on the Bayes’ theorem but 
with strong independence assumptions inside the 
features. GNB is a variant of Naïve Bayes that follows 
Gaussian normal distribution and supports continuous 
data. (Bishop, 2006). The main steps of GNB are 
calculating the probability of each class which equals to 
the portion of class’ points in the whole dataset, and 
constructing a Gaussian distribution of each class for 
each feature. To classify any unknown point, a value is 
calculated of the point for each class according to 
Equation (3), and the point is classified to the class of 
highest value. 

 

log 𝑃(𝑐𝑙𝑎𝑠𝑠𝑖) + ∑ log 𝐿(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗|𝑐𝑙𝑎𝑠𝑠𝑖)

𝑗 ∈𝐹

 (3) 

 
Where 𝑃(𝑐𝑙𝑎𝑠𝑠𝑖) is the probability of each class, and 

𝐿(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗|𝑐𝑙𝑎𝑠𝑠𝑖) is the likelihood of each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑗  of 

𝑐𝑙𝑎𝑠𝑠𝑖 , and F is the number of features. 
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2.4.3. Quadratic Discriminate Analysis 
 
A quadratic classifier is a statistical classifier that uses 

a quadratic decision surface to separate measurements 
of two or more classes of objects or events (Bishop, 
2006). The algorithm represents the points according to 
their attributes (features) on multi-dimensional graph. 
Then, it builds a quadratic boundary between classes that 
enclose each class entire a single boundary. To classify 
any point, it is located on the graph according to its 
features and is classified to the class boundary it is inside. 

 
3. Study Area and Dataset  

 

To evaluate the proposed methodology, we used a 
pre-labelled benchmark dataset (Paris Lille 3D). It is a 
part of NPM3D Benchmark Suite research project 
(Roynard et al., 2018).  It was acquired using a MLS 
system of robotics center of Mines Paris Tech (L3D2). 
The dataset consists of two parts; a longitudinal section 
of about 1500 m length with about 98 million points in 
Lille and another part in Paris with 450 length and about 
45 million points.  

 

 
Figure 6. Paris-Lille-3D dataset (Lille Part) 

 
The dataset contains mainly nine coarse classes in 

addition to some unclassified points, the classes are 
ground, building, pole, bollard, trashcan, barrier, 
pedestrian, car and vegetation. Figure 7 shows the data 
portion of different classes, some classes (both ground 
and building represent about 90% of the dataset)   

 

 
Figure 7. Dataset portion of classes 

 
 
 

4. RESULTS  
 

This research aimed at the comparison between 
three ML classifiers with three different neighborhood 
methods.  According to (Zheng et al., 2017, 2018) ,the 
change and the increase in the radius of the cylinder did 
not have a remarkable effect, hence we used the radius of 
the cylinder to equal 0.20m, and similarly we choose the 
sphere radius to be 0.20m. For the kNN method, we chose 
k = 10, as in the research of (Weinmann et al., 2015), the 
most occurrence value as an optimal value. For each 
point in the dataset, its neighbors were defined and the 
geometric features, were derived as presented in Table 1.  

The dataset was divided into two equal parts after 
replacing the coordinates of each point with their 
corresponding extracted geometric features. The two 
parts are training/validation part as well as the testing 
part. The first part was divided into four partitions, from 
which four ML models were created to find out the best 
fitting model according to the overall accuracy, after that 
our method could be evaluated with the remaining 
testing part. This procedure was implemented in all our 
classification scenarios whether the change in the 
classifier or the neighbourhood search method. 

Overall accuracy was used as a primary score for the 
models as shown in Figure 8. In the three neighborhood 
methods, cylindrical neighborhood was the best between 
the three neighborhood methods, regardless the ML 
classifier used. The overall accuracy of the cylindrical 
method for the RF, GNB and QDA was 92.39%, 78.47% 
and 78.18%, respectively. On the other hand, a great 
difference does exist between RF and other classifiers 
which makes RF is the most suitable classifier for the 
tested dataset. 

 

 
Figure 8. Overall accuracy percent of RF, GNB, and QDA 
for KNN, spherical, and cylindrical neighborhood. 

 
Other scores, including precision, recall and f1-score 

were used to individually evaluate the results of each 
class. Mobile LiDAR point clouds data of road 
environments are usually imbalanced, and two or three 
classes may consist more than 90% of the whole dataset. 
Consequently, any ML model may be confused and tend 
to classify most of the points to the major class(s). As 
shown in Figure 7, the ground and building classes 
contain about 90% of the dataset, whereas the ML 
classifier could classify the whole points to one of these 
two classes, and hence the overall accuracy could reach 

0

10

20

30

40

50

60

70

80

90

100

kNN Spherical Cylindrical

RF

GNB

QDA



Advanced LiDAR – 2022; 2(1); 01-09 

 

  7  

 

up to 90% but with misleading classification. Therefore, 
the role of using precision, recall and f1-score is to 
evaluate the classifiers with datasets that have low 
percentages of classes. 

Figure 9 shows the calculated precision, recall and f1 
score of each class using to different classifiers and 
neighborhood search methods. The ground and building 
classes achieved high results in the three classifiers. This 
comes from the large amount of points in the dataset of 
both classes. Therefore, any classifier will easily detect 
classes with large portions such as ground and building, 
and hence they could not be a measure for a good 
classifier. For instance, the precision of ground class was 
98.11%, 96.66% and 97.68%, while the recall was 
91.35%, 88.1% and 87.95% and f1-score was 94.61%, 
92.18 and 92.56% for RF, GNB and QDA, respectively. For 
building class, the precision was 95.60%, 76.27% and 
81.21%, while the recall was 92.65%, 90.25% and 
87.14% and f1-score was 94.1%, 82.67 and 84.07% for 
RF, GNB and QDA, respectively. 

On the other hand, the other classes are varying in 
their classification results, between the three classifiers; 
the RF revealed the highest scores between the three 
classifiers for detecting those low portion classes. 
Generally, the results showed that RF is much more 
effective than other classifiers. RF is also suitable to 
classes with less number of points such as poles, barriers, 
and trashcans. Therefore, classes with variant geometric 
characteristics require large scale of features to best 
distinguish between them. However, not all classifiers 
are able to handle all classes with a huge number of 
samples as well as many features. GNB and QDA 
classifiers were not able to achieve high scores for all 
classes. Only ground and building classes revealed close 
results for different classifiers. Ground and building were 
clearly distinguished due to their geometric shapes (i.e., 
2D planes) which were determined using Verticality 
feature. Thus, this is helpful for any classifier to best find 
most of points that belong to those classes. 

 

 
 

 
 

 
Figure 9. Classification results of RF, GNB, and QDA. 

 
The classes could represent an obstacle and mislead 

the classification process. It may be a class which 
misleads the algorithm for the purpose of finding other 
classes. For example in Figure 10, the white points were 
wrongly classified due to the similar geometric 
properties with other classes.  

Bottom base of vegetation (class 9 in our dataset) is 
an example, as nearly all bottom bases were classified 
wrongly. The similarity between points in different 
classes makes it not trivial task to classify those points. 
Literality, points on tree base are very similar to ground 
and curb points. They all have the same orientation and 
nearly the same height but different classes, and that 
make it difficult for any classifier. 

 

 

 
Figure 10. Example of wrongly classified points 
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5. CONCLUSION  
 

Nowadays, the growth in the utilization of mobile 
LiDAR scanning systems is very rapid in many road 
corridors’ applications. They have an advantage of there 
is no required direct contact with any road features in the 
data acquisition. That makes the MLS systems preferable 
for applications such as infrastructure and surveying 
assets. They capture huge amount of point clouds which 
describe road scenes with high details. The detection of 
different road features such as light poles, curb, and road 
signs from MLS point cloud is important to be automatic. 
The extracted information could be used in various 
applications such as quantity and volume surveys, right-
of-way asset inventory and GIS applications. 

In this research, three neighborhood search methods 
were studied and compared, namely KNN, spherical and 
cylindrical neighborhoods. Their results were varying 
and have revealed that cylindrical neighborhood method 
was the most suitable for the tested dataset. Although the 
overall accuracy of both the spherical and cylindrical was 
close using different classifiers with imbalanced dataset, 
the overall accuracy could not be a final judgment. 
However, and according to precision, recall and f1-score, 
the cylindrical neighborhood method was much more 
effective than the spherical one. 

ML classifiers are various and differ in their 
mathematical models. According to the case study and 
type of dataset, the appropriate classifier could be 
selected. Three ML were applied for road features’ 
classification from mobile LIDAR dataset to evaluate 
which classifier is more suitable. Three models were 
trained on the dataset using the three classifiers and their 
overall accuracy were 92.39%, 78.47% and 78.18% for 
RF, GNB and QDA, respectively with cylindrical 
neighborhood method. From the overall accuracy and the 
detailed scores (precision, recall and f1-score), the RF 
was the most suitable for the classification process. In 
addition, RF achieved high scores for each class including 
classes with low portion while those classes may be 
considered non-existent for the other two classifiers due 
to their very low scores. 
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 Today, photography and, accordingly, photogrammetry approach are used extensively in the 
documentation of cultural assets and the creation of three-dimensional models. Many 
advantages such as speed, accuracy and digital processing provided by photogrammetry have 
been effective in this widespread use. With the developing technologies, the reduction of 
sensor sizes has opened new doors in digital data production. As of 2020, it has been possible 
to integrate laser scanning sensors into mobile devices. For the first time, with the iPad Pro 
and iPhone 12 Pro devices, Apple started to use the built-in LiDAR sensors in its non-
professional devices as well as the digital camera. This situation has opened up new 
opportunities in the documentation of cultural heritage. In this study, three-dimensional 
models of the historical Aslanlı fountain in İçkale of the Centre Sur district of Diyarbakır 
province were produced using both photograph and laser data of iPhone 13 Pro and the 
results of the two data were compared.  

 

 
 
 
 

 
 
 
 
 
 
 
1. INTRODUCTION 

 
 

The preservation and promotion of cultural heritage 
is becoming more and more popular day by day. For this, 
promotion is very important. Cultural Heritage makes 
the city effective in terms of social and representation of 
the city's identity. When documentation, presentation 
and communication are used effectively, the city can be 
promoted correctly. (Korunmaz vd. 2011; Oruç, 2021; 
Yakar ve Yılmaz, 2008; Alptekin and Yakar., 2020; 
Alptekin et al., 2019a). 

Metric, written and visual documentation provides 
benefits in determining the problems of cultural heritage 
and transferring this heritage to future generations. 
Today, documentation studies have become very rich in 
terms of method diversity together with technology. In 
this respect, making the cultural heritage permanent 
with documentation methods ensures that the city 
develops and makes it important socially, culturally and 

economically. (Yakar vd., 2005; Uslu vd., 2016; Yaman & 
Kurt 2019; Alptekin et al., 2019b; Altuntas et al., 2007; 
Ulvi and Yakar, 2014). 

Recently, many attempts have been reported 
regarding 3D documentation and modeling of small 
artifacts using various methods or approaches. The basic 
feature of digitizing a work as a small object may vary 
depending on its size. (Yakar vd., 2009; 2010). 

Photogrammetry provides significant opportunities 
for three-dimensional location information, spatial 
analysis, simulations and visualization for cultural 
heritage. 

3D models created with the photogrammetry 
method are formed in real size and appearance. 
Photogrammetric measurement systems allow the real 
object geometry to be determined as well as modeling 
the object with its georeference. In addition, these 
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technologies allow 3D models with real images, 
especially since they are processed with the real image of 
the object (Ulvi vd. 2020; Şenol & Kaya 2019; Yılmaz and 
Yakar., 2006a; Yılmaz and Yakar., 2006b). 

Lidar (Light Detection and Ranging) technology has 
been used in various fields since it entered our lives. It is 
used for 3D modeling of structures, restoration, natural 
disasters, coastal protection, forest management and 
determining the amount of deformation in bridges. 
(Alptekin vd. 2019b). 

With the laser scanner, millions of points are shot at 
the object within minutes, and the points that hit the 
object and return are recorded. There are three types of 
laser scanners: air, terrestrial and mobile. (Alptekin, 
Yakar, 2020; Ulvi et al., 2014; Yakar et al., 2009; Yakar et 
al., 2014) 

As a data collection tool, laser scanning devices 
integrated into mobile phones and tablets have been 
used in recent years. 
In this study, the Aslanli fountain was scanned using the 
iPhone 13 pro lidar sensor. 
 
2. WORKING AREA 
 

The historical Aslanlı fountain at the entrance of the 
inner castle, located in the central Sur district of 
Diyarbakır, was chosen as the application area. 19th 
century The Aslanlı fountain, dated to the end of the B.C., 
was built from neatly cut basalt stone. The fountain is 
enclosed in a low arched niche. At the top, there is a 
triangular pediment that draws attention on two white 
short columns, and the fountain is crowned with this 
pediment. Water flows from the mouth of the lion, which 
was originally placed in a niche with a three-slice arch. 
(URL-1)  
 

 
Figure 1. Aslanlı fountain(URL-2) 

3. METHOD 
 
In the application, both Photogrammetry and Lidar 
studies were carried out. 
Lidar application was realized with Iphone 13 pro laser 
sensor. The photogrammetry application was taken with 
the same device, the iPhone 13 pro camera. 
 
3.1. Lidar Sensor 

 

 
Figure 2. Product quality in lidar measurement 
 

 
Figure 3. Four different lidar measurement methods 

http://www.diyarbakirkulturturizm.org/Yapit/Details/IC-KALE/20/Aslanli-Cesme/195
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Figure 4. Cloud spacing for smallest object 
 

 
Figure 6. Cloud spacing for largest object 
 

 
Figure 7. Top quality lidar scan distance range 
 

 
Figure 8. Object scanning distance range 1m-5m 
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3.2. Camera Sensor 
 

The camera features on the iPhone 13 pro are as 
follows: 
-12 MP Pro camera system: Telephoto, Wide and Ultra 
Wide cameras 
-3x optical zoom, 2x optical zoom; 6x optical zoom range 
-Up to 15x digital zoom 
-Portrait shooting in Night mode with the help of LiDAR 
Scanner 
-Portrait mode with advanced bokeh effect and Depth 
Control 
-Portrait Lighting with six effects (Natural, Studio, 
Contour, Stage, Stage Mono, High-Key Mono) 
-Sensor-based optical image stabilization (Wide) 
-Six-element lens (Telephoto and Ultra Wide); seven-
element lens (Wide) 
-True Tone Flash with Slow Sync 
Panorama (up to 63 MP) (URL-3) 
 
4. RESULTS 
 
4.1. Photogrammetric analyzes 
 
-Photogrammetric point cloud 4128860 points. 
-Photogrammetric point cloud is denser (average 320 
nkt/m2) 
-There is no access to the battlement in front of the 
fountain. 
-Data collection and processing takes longer. 
(no device heating and battery restrictions) 
-There are too many unnecessary points in the areas 
outside the object. 
-Object integrity is broken in areas that cannot be 
photographed. 
 

 
Figure 9. Photogrammetric point cloud 
 

4.2. Lidar application analysis 
 
-Point cloud with iphone 13 lidar, 504126 points. 
-Less dense than photogrammetric point cloud (average 
40 nkt/m2) 
-Laser beams reach into the loophole in front of the 
fountain 
-Data collection and processing is shorter. 
(there are device heating and battery limitations) 
-Less due to unnecessary point orientation in non-object 
areas. 
-Object integrity is broken in areas that cannot be 
scanned. 
 

 
Figure 10. Point cloud with lidar 
 
As seen in the figure below, the point cloud distance 
between the two applications is 11 cm. 
 

 
Figure 11. The average distance between two point 
clouds is 11 cm. 
5. CONCLUSION 



Advanced LiDAR – 2022; 2(1); 10-14 
 

  14  

 

 
-The iPhone 13 lidar sensor can be used to collect data 
on short-term outdoor objects. 
-Repeat scanning is possible to increase data density. 
-It can be used integrated with the photogrammetric 
point cloud. 
-It can be used in 3D models due to the built-in camera 
integration. 
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 The feature extraction of point clouds is essential for geomatics engineering as well 
as other engineering and architectural applications. Furthermore, with the recent 
entrance of digital twins, virtual reality, 3D city modeling, reverse engineering, and 
metaverse into human existence, 3D models, which are currently used in numerous 
technical sectors, have become increasingly important. As a result, the 3D model 
generating methods become more important. One of the most prevalent 
methodologies used by scientists is range-based modeling (e.g., laser scanning). 
Additionally, before being visualized or analyzed for 3D surfaces, 3D model 
acquisition (Light Detection and Ranging (LiDAR) or structure-from-motion (SfM)) 
and 2D imaging approaches are commonly converted into models such as 3D mesh 
and parameter surface. This study analyzed 3D point cloud data obtained with 
terrestrial laser scanners. Also, many approaches to model extraction have been 
tried to obtain 3D models, planes, corner points, and lines by using various 3D 
surface analyses and Random Sample Consensus (RANSAC) Algorithm.  

 
 

 
 
1. INTRODUCTION  

 
With the recent entrance of technologies such as 

digital twins, virtual reality, 3D city modeling, reverse 
engineering, and metaverse into human existence, 3D 
models, which are currently employed for cultural 
heritage or diverse engineering sectors, have grown in 
importance. From the past to the present, historical 
artifacts have been subjected to a variety of natural and 
artificial destructions. Because research into preserving 
cultural assets for enlightening future generations about 
history is accelerating around the world, and its (3D 
Models) relevance is overgrowing. (Kuçak, R. A., 2013; 
Kuçak, R. A., et al., 2016; Alptekin and Yakar., 2020; 
Alptekin et al., 2019a; Alptekin et al., 2019b)  

Nowadays, non-contact approaches based on light 
waves, notably active or passive sensors, are used to 
produce 3d models for cultural heritage or 
archaeological sites. For object and scene modeling, there 
are now four options: 

1. Image-based rendering, which does not build 
the geometry of a 3D model but could be used to 
construct virtual aspects. 

2. Image-based modeling (e.g., photogrammetry), 
the preferred method for preserving 
architectural structures' geometric surfaces and 
cultural heritage. 

3. Range-based modeling (e.g., laser scanning) is 
becoming a typical approach for scientists and 
non-expert users such as Cultural Heritage 
personnel. 

4. The combination of image and range-based 
modeling, as each has advantages and 
weaknesses, and their integration can allow for 
the efficient and rapid development of detailed 
3D models. (Almagro A. and Almagro Vidal A., 
2007, Kuçak, R. A., et al., 2016, Korumaz, S. A. G. 
2021; Altuntas et al., 2007; Ulvi and Yakar, 2014) 
 

http://publish.mersin.edu.tr/index.php/lidar/index
https://orcid.org/0000-0002-1128-1552
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Laser scanning is a modern technology that allows 
multiple 3D scans to be acquired in a short amount of 
time, whether from the air or on the ground. It creates a 
3D point cloud with intensity values in a local coordinate 
system; internal or external digital cameras usually 
provide extra information such as RGB values. Laser 
scanners can be used on the ground or as component of 
an aircraft. Laser scanning, on the other hand, produces 
a point cloud, which is a set of XYZ coordinates in a 
coordinate system that depicts to the observer a 
knowledge of a subject's spatial distribution. Pulse, 
amplitude, intensity, and RGB values may also be 
included. (Kuçak, Kiliç, & Kisa, 2016; Ulvi et al., 2014, 
Yakar et al., 2009, Yakar et al., 2014)) 

The Random Sample Consensus (RANSAC) method 
(Fischer and Bolles, 1981) extracts forms by constructing 
candidate shape primitives by drawing minimal data 
points at random. If the primitives have some semantic 
meaning, a categorization is also performed. Then, the 
candidate shapes are compared to all points in the 
dataset to establish a value for the number of points that 
reflects the most excellent match. Locally fitting 
primitives like planes, cylinders, and cones using 
RANSAC-based algorithms is a popular reverse 
engineering strategy (Schnabel et al. 2009). (Grilli, E., et 
al.,2017). 

Terrestrial laser scanning (TLS) data can be used by 
editing in various CAD programs for architectural 
projects.  The purpose of this study is to be 3D analyze of 
the building scanned with 3D terrestrial laser scanning 
technology, after analyzed object details by scanning 
with the terrestrial laser scanner, the 3D models and 3D 
surfaces of the 3D point clouds were generated with 
RANSAC Algorithm. Also, the advantages and 
disadvantages of open source code software is to 
evaluate for obtaining 3D surfaces and performing 
various surface analysis by using an Open Source 
program.  

In this study, the TLS point clouds are selected to 
model the 3D Surfaces. Thus; it is intended a contribution 
to the accuracy of cultural heritage 3D model and 3D city 
models produced with point clouds. So, the faculty of 
Civil Engineering located in Ayazaga Campus of ITU in 
Turkey was selected as study area.  The study area 
scanned with Leica C10, which can get 50,000 points per 
second with 6 mm accuracy. With the RANSAC algorithm 
primitive shapes was extracted from the point cloud and 
the primitive shapes are assigned to colors that have 
been discovered. Also, The 3D surface analysis of 3D 
point cloud were carried out.  

 
2. DATA and METHOD 

 
The faculty of Civil Engineering located in Ayazaga 

Campus of ITU in Turkey was selected a study area which 
is an indoor data (Figure 1).  The study area scanned with 
Leica C10, which can get 50,000 points per second with 6 
mm accuracy. The study area is indoors data. The 3D 
surface analysis of 3D point cloud were carried out.  

 

 
Figure 1. TLS Point Cloud indoor data (Leica C10) 
 
2.1. Terrestrial laser scanning (TLS) 
 

Light Detection and Ranging (LiDAR), which can be 
used on the ground or in the air, is an advanced 
technology that enables it to gather much 3D data 
quickly. In the local coordinate system, it generates a 
point cloud with intensity values; additional data, such as 
RGB values, are typically provided by internal or external 
digital cameras. (Kuçak, Kiliç, & Kisa, 2016; Kuçak, 
Özdemir, & Erol, 2017) 

TLS is an effective technology for rapidly gathering 
3D data distributed across a vast area (Kuçak et al., 2013, 
Kuçak et al., 2016, Kuçak et al., 2020). TLSs consist of 
lasers, carefully calibrated receivers, precise timing, 
rapid micro-controlled motors, and accurate mirrors 
(Fowler & Kadatskiy, 2011). The virtual point cloud 
generated by all of the 3D points from the surfaces that 
were scanned harmoniously is the fundamental data 
gathered from each scan (Scaioni, 2005). TLS is an 
effective technology for producing a 3D dense point 
cloud using traditional measuring techniques because of 
its precision and accuracy (Çelik et al., 2020). The quality 
of the 3D models is affected by registration errors; hence 
the registration of TLS scans must be done correctly. 

 
2.2. 3D Surface Parameters 

 
Surface parameters are used to explain the surface's 

local geometry. In point cloud analysis, these surface 
features are now routinely used. These geometric 
features are intended to be extracted (surfaces, lines, 
corners, and key points). The eigenvalues (λ1, λ2, λ3) of 
the eigenvectors (v1, v2, v3) produced from the covariance 
matrix of any point p of the point cloud can be used to 
calculate surface parameters (Table 1). (Atik, M. E., 
Duran, Z., & Seker, D. Z. 2021). 

 
Table 1. Surface parameters derived from eigenvalues 

Sum of eigenvalues 
Omnivariance 
Anisotropy  
Planarity  
Linearity  
Surface variation 
Sphericity 
Verticality  
1st order moment 

 λ1 + λ2 + λ3  
(λ1.λ2.λ3)^1\3  
(λ1 − λ3)/λ1  
(λ2 − λ3)/λ1  
(λ1 − λ2)/λ1 
λ3/(λ1 + λ2 + λ3)  
λ3/λ1 
λ1.In λ1+ λ2.In λ2+ λ3.In λ3 

see Eq. (1) 

https://tureng.com/tr/turkce-ingilizce/carry%20out
https://tureng.com/tr/turkce-ingilizce/carry%20out
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Many values are calculated using eigenvalues (Table 
1). (Sum of eigenvalues, omnivariance, roughness, 
anisotropy, planarity, linearity, surface variation, 
Sphericity, 1st order moments and curvatures etc.) these 
parameters derived from only 3D coordinates.  

 
m ↑= ∑ (pn −  p𝒊). , v𝟐n∈Pn ,                          (1) 

 
where Pn denotes the set comprising the N nearest 

neighbours of each individual point p𝒊 , (., ) denotes the 
scalar product, v𝟐 is egeinvector, m ↑ is the first order 
moment of p𝒊.  

Curvatures are a surface's geometrical features that 
are invariant according to rotation, translation, and 
scaling. There are many methods to calculate the 
Curvature of a surface. The Curvature can be calculated 
easily when the analytical formula is available for a 
surface, but these methods are not usually applicable to 
point clouds’ surfaces. So, the surface fitting method 
depending on a point and its neighbors is a good way. 
(Foorginejad & Khalili, 2014)  

For the curvature estimation, one of the most 
preferred methods is the covariance analysis method 
(Hoppe, DeRose, Duchamp, McDonald, & Stuetzle, 1992), 
which uses the ratio between the minimum eigenvalue 
and the sum of the eigenvalues. This method is known as 
the surface variance (Pauly, Gross, & Kobbelt, 2002). The 
surface variance is appropriate for point clouds because 
it uses the coordinate of a point and its neighbors, and it 
is not expensive to process. (Foorginejad & Khalili, 2014). 

 
2.3. RANSAC Algorithm  

 
The Random Sample Consensus (RANSAC) method 

(Fischer and Bolles, 1981) extracts forms by constructing 
candidate shape primitives by drawing minimal data 
points at random. If the primitives have some semantic 
meaning, a categorization is also performed. Then, the 
candidate shapes are compared to all points in the 
dataset to establish a value for the number of points that 
reflects the most excellent match. Locally fitting 
primitives like planes, cylinders, and cones using 
RANSAC-based algorithms is a popular reverse 
engineering strategy (Schnabel et al. 2009). (Grilli, E., et 
al.,2017). 

The RANSAC algorithm works by searching a 3D point 
cloud for primitive shapes (plane, sphere, cylinder, cone, 
and torus). It extracts primitive shapes from point cloud 
data by randomly picking minimal groupings of points 
and fitting primitive shapes. The RANSAC algorithm 
computes the parameters of a basic shape by randomly 
drawing the least number of points (a minimum set) that 
may uniquely define it. The program next looks for more 
points in the point cloud and decides whether or not they 
correspond to the fitted primitive shape. The generated 
potential primitive forms are compared to all points in 
the data to see how many of them the primitive can 
accurately approximate. The RANSAC approach 
compares the recognized potential primitive shape with 
the last saved one in each round of iteration. If the new 
shape is more suitable, it will replace the old one. The 
best possible shape is the primitive shape that 
approximates the most significant number of points; its 

parameters were generated during the segmentation 
process, and the points that correspond to it can be 
projected onto the surface. The RANSAC algorithm 
extracts a primitive shape from the point cloud and 
continues the segmentation procedure on the remaining 
points. The primitive shapes that have been discovered 
are assigned to Colors. (Liu, J., 2020) 

In the classic RANSAC formula, The starting value of t 
is 0, and the number of times the current iteration is 
calculated is t (Li, M., et al.2019). 

 
• When t is less than the target iteration 

number r, data points are chosen randomly 
from the data collection, and a model 
appropriate for the data is built. 

 
• Data points that satisfy the model are located 

and counted in the number of data points 
suitable to the model from the remaining (N 
num) points. 

 
• The ideal model in this iterative process is 

found when the number of data points 
suitable to the model exceeds the stated 
standard number “m”. 

 
• The first step is repeated to find the best 

model until the iterative calculation is 
complete. 

 
The probability “w” that each point taken from the point 
cloud data set “N” is exactly an inner point is assumed in 
the original RANSAC algorithm. The value of w is typically 
unknown; however, it can be approximated using an 
equation (2). (Li, M., et al.2019) 

 
w =  m/N                                                (2) 

 
P denotes the ideal probability that the initial RANSAC 
method will produce a helpful model once executed. The 
number of iterations “r” is determined by the theoretical 
results (3) (Li, M., et al.2019). 

 
r = In(1−P) / In(1−𝑤min)                             (3) 

 
3. RESULTS  
 

We calculated the geometric features (Table 1) of a 
surface. Then, we filtered and segmented the data 
according to optimum values. In this way, we could 
quickly obtain vertices, boundary lines, and 3D surfaces 
from 3D point clouds. 

Many values are calculated using eigenvalues (Table 
1). (Sum of eigenvalues, omnivariance, roughness, 
anisotropy, planarity, linearity, verticality (Figure 2) 
surface variation, Sphericity, 1st order moment and 
curvatures (Figure 3) etc.) Since the datasets used 
contained only geometric information (3D coordinates).  
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Figure 2. TLS Data According to 1st Moment (Leica C10) 
 

 
Figure 2a. Boundary lines According to 1st  order 
Moment   

 

 
Figure 3. TLS  Data According to Surface Normal  (Leica 
C10) 
 

 
Figure 3a. Boundary and corner lines according to 
Surface Normal   

As seen above, boundary points and corner points, 
which can be used in many studies, can be obtained by 
surface analysis (Figure 2a and Figure 3a). After these 
analysis, lines can be drawn automatically from the 
obtained points used in surveying and restoration works. 
 On the other hand, specific primitive shapes can be 
extracted from point clouds to use in different 
engineering studies. For this purpose, the RANSAC 
algorithm have been tested in this study by using the 
Cloud compare program. Obtained results are presented 
at Figure 4. Locally fitting primitives like planes, 
cylinders, and cones using RANSAC-based algorithms is a 
popular.  As seen from this case study, since there are 
only plane surfaces, the other cylinder, sphere etc. this 
application could not be tested either. 
 

 
Figure 4. The primitive shapes (planes) with RANSAC 
Algorithm for small point cloud data 
 

According to the results obtained from the studies 
with the RANSAC algorithm, the performance of the 
RANSAC algorithm in big data has been tested. Since 
there are only plane features in the case study data, plane 
surfaces can be obtained accurately in extensive data as 
follows (Figure 5). 

 

 

 

 
Figure 5. The primitive shapes (planes) with RANSAC 
Algorithm for dense point cloud 
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As seen in Figure 5, it is the topmost original point 
cloud. The figure in the middle is RANSAC applied. In the 
middle picture, the algorithm could extract the walls and 
doors clearly as a plane. The bottom picture can be seen 
that it can extract the plane surfaces of the doors and the 
painting on the wall. According to the results above, the 
RANSAC algorithm can easily extract plane surfaces on 
LiDAR data. 

In this study, Total station measurements also were 
made to determine the accuracy of the laser point clouds. 
The accuracy of the laser point clouds was calculated by 
taking the differences from about ten distances at specific 
points (Table 1). TLS data was found to have a standard 
deviation of 0.007 m. 
 
Table 1.  The base distances of points and the differences 

Points (m) Total_Station Lazer Diffrence (m) 
23-22 5.496 5.490 0.005 
23-21 6.551 6.542 0.008 
23-20 4.554 4.557 -0.002 
23-19 4.657 4.635 0.021 
22-21 1.694 1.697 -0.002 
22-20 2.660 2.655 0.005 
22-19 4.783 4.775 0.007 
21-20 4.315 4.312 0.002 
21-19 4.516 4.509 0.007 
20-19 6.180 6.168 0.012 

 
4. DISCUSSION 
 

For architecture projects, terrestrial laser scanning 
data can be edited in various CAD systems. This research 
aims to perform a 3D analysis of a building scanned with 
3D terrestrial laser scanning technology. After analyzing 
object features with a terrestrial laser scanner, RANSAC 
Algorithm was used to construct 3D models and 3D 
surfaces from 3D point clouds. The benefits and 
drawbacks of open source code software are also being 
assessed for getting 3D surfaces and doing various 
surface analyses utilizing an Open Source program.  

Statistical methods were used to compare the base 
distances, and the coarse mistakes were removed from 
both sets of data. For TLS, the standard deviation of the 
base distances was computed. TLS data was found to 
have a standard deviation of 0.007 m. All standard 
deviations of the 3D models are acceptable; compared 
with the data accuracy acquired by the scanner of Leica.  

Point cloud resolution and accuracy are critical to 
building 3D precise mesh models and surface 
characteristics. As a result, working with high resolution 
and accuracy point clouds rather than additional point 
clouds in 3D modeling is the foundation of research in 
point clouds. As a result, it is critical to use high-precision 
point clouds, plenty of them for data modeling. Various 
filtering algorithms can be used for modeling, 
interpolation, and surface fitting operations; however, 
modeling or interpolating data that is missing or wrongly 
measured is always challenging. The results show that 
the RANSAC Algorithm can produce high-precision and 
complete three-dimensional geometric models, resulting 
in reliable 3D data that is important for restoration and 
other engineering works. 

 

5. CONCLUSION  
 

Working with high-accuracy points to model point 
clouds and having enough data is a critical aspect of point 
cloud research. In point cloud investigations, it is also 
crucial to know the precision or resolution required for 
modeling. The registration or modeling processes can be 
completed if the point clouds are sufficient for the 
desired works. If the needed surface data is absent or of 
insufficient precision and resolution in the existing point 
cloud, it will be a more accurate technique to create a 
more accurate point cloud from the existing point cloud 
and integrate it into the reference data for interpolation 
or modeling.  

The experiments performed in this study show that 
one unique technique or geometric features cannot 
recommendable for the 3D Surface parameters or 3D 
models of 3D point cloud. In the process of surface 
reconstruction, Random Sample Consensus (RANSAC) is 
frequently applied. Geometric features of point clouds 
produced at multi scales can be used for vertices and 
boundary lines from 3D point clouds. 
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 The use of Terrestrial Laser Scanner (TLS) technologies in cultural heritage studies has 
become more common day by day. In addition to documenting a historical building with high 
accuracy, TLS technologies can obtain detailed data about the structure being studied by 
analyzing point cloud. Laser scanning data is seen as a non-contact and effective analysis 
method in determining the formal deformations that occur due to various reasons, especially 
in historical buildings. With this method, it is possible to determine how much the object 
deviates from a reference 3D model or plane and with this analysis, deformation maps can be 
prepared. With the help of these maps, intervention decisions can be made. Within the scope 
of the article, laser scanning data of Selime Sultan Tomb located in Güzelyurt Selime Town in 
Türkiye, one of the important settlements of Cappadocia, were acquired. By comparing the 3D 
mesh model prepared with base on point data, the morphological differences and deviations 
of the tomb were determined and mapped. 

 
 
 
 
 
 

1. INTRODUCTION  
 

In the last 20 years, laser scanning technologies 
have brought new initiatives to cultural heritage studies. 
Laser scanning data is used to define the structural safety 
of historical buildings and to determine their formal 
anomalies. Laser scanning technology collects highly 
accurate 3D data to provide conceptual understanding of 
the historic building (Lindenbergh, R., & Pietrzyk, P. 
2015). By analyzing the laser scanning data, information 
of the possible behavior of the buildings could be 
obtained. (Fregonese et al., 2013; Kaartinen, 2022; 
Alptekin and Yakar., 2020, Alptekin et al., 2019a, Alptekin 
et al., 2019b). Moreover, using these data, the application 
errors related to construction period of historical 
building could be analyzed. Beside these, the formal 
deformations exposed to any reason could be 
determined. In addition, material properties of the 
building, deformations caused by the ground and the 
damages caused by the earthquake could be analyzed. 
While these analyzes are carried out in classical methods 
by directly contacting the surface and by establishing a 
scaffold, thanks to laser scanning data similar analyzes 

could be performed without contacting these surfaces. 
However, it can be said that the analyzes made with the 
classical methods are more subjective than the laser 
scanning data (Pesci et al. 2011; Altuntas et al., 2007; Ulvi 
and Yakar, 2014, Ulvi et al., 2014).  

In recent years, quality controls could be made by 
using point cloud data at different stages of all 
production sectors. Thanks to software using point cloud 
data in different sectors, quality controls could be made 
by comparing the current sample with a reference 
product. Due to the benefits of this technique, different 
software have tried to produce solutions for the subject. 
In general, commercial (Geomagic, Cyclone, PolyWorks 
3DReshaper etc.) and opensource software such as 
CloudCompare can perform these analyzes in a qualified 
manner.  

Besides regular contact and contactless structural 
analysis, deviation analysis method can provide some 
data about the structural problems of the building and 
can detect the error and error resources in modelling 
process. Different deviation pattern could be correlated 
with different type of errors and deviation patterns 
facilitate identifying of error resources. 

http://publish.mersin.edu.tr/index.php/lidar/index
https://orcid.org/0000-0001-6337-9087
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2. DEVIATION ANALYSIS 
 
The term deviation, which is used by different 

disciplines, is a method of determining differences and 
anomalies by making comparisons from a plane or object 
at a certain time or periodically in production or 
construction industry. According to Anil et. al. (2013) 
TLS data base analyses 6 times more sensitive than eye-
contact observations. 
These analyses techniques could be carried out by 
different data or 3D model for different purpose: 
- Comparison of two point clouds at different times: 
Generally, this comparison purposes as an observation of 
building Deviations from the reference point cloud by 
comparing point clouds measured at different times 
(Scaioni, 2013; Wunderlich, 2016). Similarly, point 
clouds from different sources could be compared 
(Ahmad Fuad,2018; Vanneschi et. all, 2017; Yakar et al., 
2009, Yakar et al., 2014, Yılmaz and Yakar., 2006a). These 
sources can be photogrammetric data and TLS data or 
point clouds could be obtained with different devices. In 
this technique, the main challenge is how to efficiently 
and precisely identify the correspondences points 
between the compared objects. 
- Deviation analysis of building with respect to orthogonal 
planes: They are widely used for vertical deviations of tall 
buildings or for deformation mapping of surfaces. 
Thanks to laser scanner data some deformations could be 
measured about the historical buildings like overhanging 
of some part of building, progressive changes of 
inclinations, differential movement of structure 
(Castagnetti et.al. 2012). Deviations have been defined by 
carrying out a detailed analysis of deflection from 
verticality with respect to orthogonal plane that is 
perpendicular position of the inclination direction. 
Vertically analysis of high buildings can be carried out by 
cutting point cloud or mesh models and obtained 
sections. (Bertacchini et. al.2010). This method can 
provide data local leaning and tapering angle, radius, 
local deviations from local curvatures (Teza and Pesci 
2013). Similarly, deformation maps can be created on 
large surfaces by measuring their distances relative to a 
reference coordinate system or reference plane. The 
main difficulty in this method is how to create and 
determine the reference plane and the location related to 
the building. Essentially, a point on a building that is 
assumed to remain unchanged over time can form the 
reference point of the reference plane. 
-Surface analysis of building with best-fit cone and cylinder 
or 3D Model: Some software packages are optimized for 
analysis of mesh and point cloud data as a reliable tool 
for shape analysis with respect to planer, spherical, 
cylinder and cone reference objects. (Korumaz et. al, 
2017; Yang, 2017, Bruno, 2018).  The computation of the 
distance field between the point cloud or mesh model 
and reference shapes provides local deviations from the 
expected shape  

The error map-based approach can be carried out 
with standard tools for point cloud inspection. In many 
case examples, geometries that are not cones or cylinders 
cannot be analyzed because a single suitable geometry 
cannot be created for the entire object, and sometimes a 

different reference geometry must be created for each 
part of the building. 
-Point cloud versus mesh model comparisons for the whole 
structure: It is the comparison of the prepared mesh 
model with the point cloud data of the structure 
(Nguyen,2018). This technique could be used in reverse 
engineering applications for comparing deformation of 
final product and prepared mesh model. In addition, by 
comparing an idealized mesh model with a point cloud, 
the deviations of the structure from this model can be 
measured and comments on the deviation could be made. 
 
Deviation analysis consists of four stages: 
 

a. Determination of deviation analysis techniques 
according to features of the building.  The deviation 
analysis technique is determined according to the nature 
of the surface or all building to be analyzed. Comparison 
of different point clouds, reference plane, best fit cone or 
cylinder, or 3D mesh model comparisons are selected 
based on analysis. 

It is observed in the literature that the analyzes of a 
tall building are mainly for deviation from the vertical 
plane (Schneider, 2006; Yılmaz and Yakar., 2006b). 
Similarly, in high-rise buildings, a reference cone, 
cylindrical or prismatic geometry that best overlaps with 
the point cloud can be compared to the whole or part of 
the building. More complex forms can be compared with 
prepared 3D models and differences could be obtained. 

b. Mapping of Deviations: Thematic expression of 
deviations is a mapping method that the best overlapping 
segments are marked as green (0 and close to zero value) 
and positive and negative differences as from red to blue. 
Map colors may change according to the determination 
of threshold values. The smaller threshold value ranges 
in mapping, the more precise the damage can be 
expressed. As the threshold values increase, the content 
of the map becomes more general. 

c. Deviation analysis and determination deviations’ 
reasons: The main purpose of damage detection in 
cultural heritage studies is to find the source of this 
anomalies. Prepared deformation maps give a 
preliminary idea of damages (Neuner et. All, 2016; Holst, 
2017). Vertical distortions, ground strength problems, 
anomalies on the walls, color differences, vegetation on 
the surface can be given as examples (Hsieh, 2012). After 
these determinations, the laser scanning data may not be 
sufficient and the causes of the deformations can be 
determined by using different techniques. 

d. Generating intervention decisions: Intervention 
decisions related to cultural heritage can only be 
developed based on highly accurate documentation and 
analysis methods. One of the most important criteria for 
its interventions are the correct determination of the 
problems. Intervention decisions can be made based on 
these correct determinations. Structural interventions 
could be made according to the size of the deformation in 
the historical building. Soil reinforcement can be applied 
for ground settlements. Preventive measures for cracks, 
deformations and spills on flat surfaces could be made in 
line with the analysis. 
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3. METHOD 
 
The methodology of the study consists of two parts. 

In the first part, the point cloud model of the Tomb is 
created using TLS data. The second part consists of 
comparing the point cloud with the idealized 3D mesh 
model produced with reference to the point cloud and 
the creation of the deformation maps. FaroS120 was 
used to obtain the point cloud, and post-process 
applications were produced in Faro Scene software. 
SketchUp was used for creating 3D Cad model and 
UNDET software was used to import the point cloud to 
Sketchup. Cloud Compare opensource software was used 
for point cloud comparison and deformation maps with 
produced 3d model (Figure 1). 

 

 

Field of View (FOV), Topographic Measurement 

 
TLS, Data Acquisition (Point Cloud) 

 
Data Preparation (Remove Noise, Cleaning) 

 
Export to SketchUp with Undet   

 
Import 3d Cad Model and Point Cloud to CloudCompare  

 
Compare Cad model and Point Cloud 

 
Obtain Deformation Maps and Results 

Figure 1. Workflow of Study 
 

4. DATA AQUSITION, POST PROCESSING and 
DEVIATION ANALYSIS OF HISTIRICAL TOMB 

 
4.1. Short History of Tomb 

 
The tomb is in the borders of the Cappadocia region 

within Aksaray province in Turkey. It is mentioned as Ali 
Pasha Tomb (Konyalı, 1975), Anonymous Tomb (Bakırer, 
1981), Selime Hatun Tomb (Anonymous, 1995), Selime 
Sultan Tomb (Önkal, 1996) in researches and various 
publications (Figure 2,3). Although the exact date of 
construction of the tomb is not known, researchers 
generally dated its construction period as XIII century. 
The building was abandoned for many years and its 
restoration was carried out in 1996. The building 
consists of two floors. The burial space is located in the 
basement level and there are symbolic mausoleums in 
the upper part. 

It is observed that it was exposed to severe 
deformations with examination of old pictures of the 
building (Figure 4-5). Major interventions or repairs 
were made in restoration process in 1996. The tomb has 
an octagonal plan scheme. This octagonal plan narrows 
towards the upper levels and the surfaces are inclined. 
Constructing this geometry requires very careful 
craftsmanship. Within the scope of the article, analyzes 
were made to determine whether this geometry was 
restored properly or not. 

   
Figure 2. Current Images of Tomb                                             
 

 
Figure 3. Entrance of Tomb and Brick Array 

 

 
Figure 4. Old images of Tomb before 60’s. 
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Figure 5. Structural deformations of Tomb around 60’s. 

4.2. Data Acquisition 
 
Data acquired with Terrestrial Laser Scanner 

(Faro S120 Laser Scanner) were transferred and aligned 
with Faro Scene software. All alignment, flittering, 
cleaning works carried out in Scene software. The 
building was scanned in the form of two intertwined 
circular path. While the far scans measure the cone 
section of the tomb, the scans in the inner circle are close 
to the octagonal façade of the tomb and intensive 
measurements were made. During the scanning, 
positions were chosen providing a perpendicular angle 
to the surface for reducing distorted number of the 
points. In the post-processing stage, a more 
homogeneous point cloud was obtained by cleaning and 
filtering of the dataset separately for each scan. After this 
stage, approximately 22 thousand points remain after 
filtering and subsampling (Figure 6). 

 

 

 
Figure 6. After postprocessing of Tomb’s data in Faro Scene. 

 
4.2. 3D Cad Modeling of Tomb 
 

The point cloud was exported in E57 format. The 
extracted point cloud was imported into SketchUp using 
the Undet plugin. Undet Plugin was used while importing 
the point cloud into the Sketch Up. Undet plugin provide 
to point cloud to be managed and organize point cloud. 
Thanks to this plug in it is possible to measure distances 

and vertical and horizontal sections could be prepare for 
CAD modeling of building. Undet plugin also provide 
snapping of point cloud. This is very helpful for creating 
3D cad model in Sketch Up. Preliminary comparison of 
the prepared 3d mesh model and the point cloud is made 
in Sketch Up and User was able to observe the differences 
between the model and the point cloud (Figure 7-8). 
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Figure 7. Point Cloud and 3D Mesh Model in Sketch Up. 

 

 
Figure 8. Pre-comparison of point cloud and 3d model in Sketchup with Undet Plugin. 
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4.4. Comparison of Point Cloud and 3D Mesh Model 
 
CloudCompare is an opensource software for any 

purpose commercial and education. This software 
provides significant advantages regarding point cloud 
postprocessing. The most important of these advantages 
is the comparison of two point cloud data and mapping 
according to the distance differences between them. In 
addition, a reference mesh model and reference plane 
can be compared with the point cloud. The mesh model 
and point cloud prepared within the scope of the study 
were imported into CloudCompare and comparisons 
were made. It should be considered at this stage is to the 

overlap of the cloud data and the boundaries of the 3D 
model. In this context, if deformed points and parts that 
need to be filtered are observed in the point cloud, these 
areas must be segmented (after segmentation 
unnecessery point cloud could be delate) or filter could 
be applied. At this step, the pointcloud data density could 
be reduced by sampling so that the point cloud density 
could be homogeneous. Within the scope of the study, 
noise filter was applied to the point cloud data and then 
a homogeneous point cloud was obtained by sampling at 
0.005m intervals. After this application, the point cloud, 
which was around 55 million, decreased to around 22 
million (Figure 9-10). 

 

 
Figure 9. Point Cloud and 3D Mesh model in CloudCompare 

 

 
Figure 10. Point Cloud and 3D Mesh model in CloudCompare 
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After these preparations, the point cloud and the mesh 
model were compared. In the preliminary comparison, 
the software makes a pre-evaluation. In this evaluation, 
3D mesh model is automatically used as the reference 
object. For cloud to mesh comparison, these parameters 
were chosen: Octree level: this is the level of subdivision 
of the octrees at which the distance computation will be 
performed. In this article octree level was used as default 
setting. Signed distance, flip normal and multi-threaded 
adjustments are used as default setting as well (Figure 
11). After the analysis was completed, the results 
obtained were expressed graphically. In this study, the 
Cloud to Mesh “Signed distance” was determined 
between +0.3m and -0.3m. The color range of the 
deformation range is expressed in the display parameter 
range chart. The most intense color difference in this 
diagram is used in the deformation map (Figure 12). 

As a result of the comparison, it has been observed 
that the geometry of the tomb differs from the targeted 
geometry (3d Mesh model) in the first time period and 
there are slope differences between the surfaces. The 
surface slopes of the cone and the tomb is different from 
each other. This difference shows that the tomb was 
deformed in form within the restorations made in 1996. 
It shows that the deformation of the sections closes to 
shades of green on the thematic maps is less than 0.15m. 
It has been observed that there are more distance 
differences of more than 0.15m in the red sections. While 
the biggest differences in the facades were in the 
entrance facade, it was observed that the differences in 
the right side and left side facades were less than 0.15m 
(Figure 13-16). 

 

 

 
Figure 11. Pre-comparison of Point Cloud and Mesh Model 

 

 
Figure 12. Visual properties of comparison. 

 
 

 
Figure 13.  Front view and Back view of thematic map.  
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Figure 14.  Front view and Back view of thematic map. 
 

   
Figure 15.  Right view and left view of thematic map.  
 

   
Figure 16.  Right view and left view of thematic map.  

 
5. RESULTS 

 
In this article, the results are shared that obtained by 

comparing point cloud data and 3D mesh model. 
Deviation analysis method gives an idea of how much 
difference occurs from ideal reference geometry by 
comparing point cloud data. These differences could be 
arisen from the time period when the building was first 
built, as well as natural disasters, ground and material 
problems over time. 

In the case of Aksaray Selime Sultan Tomb, the 
historical building was abandoned for a long time, and 
the building was almost rebuilt with an insensible 
restoration work in 1996. During the restoration, it was 
observed that there were formal deformations on the 
structure, its geometry was disturbed, and there were 
different slopes on the vertical and lateral surfaces. It is 
understood that the cone shape deviates from the central 
point. 

This case study is important in terms of identifying 
restoration errors as a result of comparing the point 
cloud, which develops an innovative analysis method in 
cultural heritage studies, with a reference plane and 
object. An intervention decision for the deformations 
with the thematic maps obtained from the study could be 
suggested by the restorer architects or structural 
engineers. 
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