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 The statistical properties of image pixel brightness were investigated to provide 
a rationale for the choice of the necessary mathematical image model. Video recordings 
of the ground situation, obtained from the onboard optical-location system of 
an unmanned aerial vehicle, were generated and analyzed. The requirements 
for a mathematical model of brightness under ground-based background-target 
conditions were formulated. Based on these requirements, a semi-Markov model of 
brightness with Poisson moments of transition from one state to another was proposed 
to describe pixel brightness. The adequacy of the proposed model in describing pixel 
brightness has been verified. 

 
 
1. Introduction  
 

Many scientific publications [1-9] discuss the effective utilization of information from the onboard optical-
location system (OLS) for tracking ground objects. These objects encompass civil and military ground 
transportation, people, infrastructure, and more [10-19]. Tracking in OLS becomes challenging due to the 
observation of objects against complex and diverse backgrounds such as road surfaces, landscapes, vegetation, 
and other ground objects. Additionally, the ground background-target situation often involves multiple objects 
simultaneously within the OLS frame, making manual tracking by operators difficult. To address multi-target 
situations, automating the tracking process based on onboard radar data proves to be effective. Common 
approaches for automation include contour analysis, reference point selection, extreme-correlation analysis, and 
neural network algorithms [1,2,6,7]. However, their effective application in ground-based background-target 
scenarios remain a relevant issue, given the diversity of acquired images. As a result, various accepted 
mathematical models of images have emerged to tackle this diversity [2,6]. 

This paper explores the statistical properties of image pixel brightness and aims to select a highly suitable 
mathematical model. The analysis of video recordings from the airborne optical-location system is presented, 
which captures ground background-target situations. This analysis enables the formulation of requirements for 
the chosen mathematical model. 

 
2. Material and Method 
 

The image formed by a video sensor is the result of registering radiant energy (brightness) coming from the 
observed scene and converting it into electrical signals. Matrices on charge-coupled devices (CCDs) are widely 
used as video sensors [1,7]. The CCD sensor uses a rectangular lattice of nodes where electrons are collected 
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(Figure 1). The distribution of light flux brightness along the rectangular coordinates of the CCD matrix ( ),x y  at 

the moment of time t can be represented by a two-dimensional function of the form Equation 1: 
 

( ) ( ) ( )
+

= 
0

, , , ,λ, λ λf x y t C x y t S d  (1) 

 
where ( )  max0 , ,λ,C x y t С  is the function of brightness distribution on rectangular coordinates of CCD matrix 

( ),x y  depending on the wavelength λ  of light flux components at the moment of time t ; maxС  is the maximum 

brightness; ( )λS  - spectral sensitivity of the video sensor. 

The geometric dimensions of a rectangular grating are constrained by the characteristics of the imaging system 

(optical system) and are different from zero    0 , 0x yx l y l . The function ( ), ,f x y t  represents an analog 

image and is bounded in the rectangular area x yl l . To realize digital processing, the continuous image ( ), ,f x y t  

is converted into a digital image. The process of converting a continuous image into a discrete image is called 
discretization, and the image is discretized. 
 

 
Figure 1. Representation of an image formed by a rectangular CCD matrix. 

 

A color discretized image kf  with frame number k , formed at time t , is a set of three rectangular matrices of 

size xL  per yL  red (r), green (g) and blue (b) colors (Equation 2): 

 

   
=

= = 
3

1
, ,gr b

k k k kk c

c
ff f f f f ,  = = = =1, 2, 3r b gc  (2) 

 

Where   = − = −

= ==
1, 1

0, 0
y xi L j L

k k ij i j
c cf f  is the general designation of the rectangular image matrix of red color at 

c=1 (r), green at c=2 (g) and blue at c=3 (b); f  are the set of points in the observation space belonging to the 

image k
c

ff ; = −0... 1yi L , = −0... 1xj L  are row and column numbers of the matrices;  k ij
cf  is the general 

notation of the pixel number ( ),i j  of the discretized image of red at c=1, green at c=2 and blue at c=3. 

Brightness values in color channels r
k ijf , g

ijkf , b
k ijf  are formed independently of each other and are complexed 

in the process of further processing. Brightness of a pixel of the frame image k ij
cf  can take integer values 
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in the range of 0...255k ij
cf . The number of pixels (nodes) in the CCD matrix is defined by the rectangular 

area x yl l (Equation 3): 

 

= x x xL l l , = y y yL l l  (3) 

 
where  =x x xl l L ,  =y y yl l L  is the distance between the pixels of the CCD matrix along the coordinate x 

and y. 
As a rule, the brightness values of image pixels kf  are known only at the moment of frame time k, and the 

regularities of their changes in time are not known and are random. This is primarily due to the constantly 
changing background-target environment, where the observed objects move both due to their own motion and 
due to the movement of the optical axis of the OLS. In this regard, it is convenient to use a mathematical model of 
the form to describe the brightness of the image (Equation 4): 
 

( ) ( ) ( )+ + +
= +

1 1 1k ij k ij k ij
c c cf Hα w  (4) 

 

where = 1 0H  is the static vector of recalculation of changes in the state vector into changes in the vector 

of observed parameters; 
( )+1k ij
cα  is the vector of brightness state of the ( )i j -th pixel on the +( 1)k -th frame 

in the each color channel c  c ; 
( )+1k ij
cw  are the uncorrelated Gaussian samples of brightness fluctuations 

in the each color channel ( )c . 

The state vector =
Т

 kij k ij k ij
c c cα Θ V  may include the brightness of a pixel of the image of some object k ij

cΘ  

and its rate of change   k ij
cV . In such a case, the state vector can be represented as a Markov model (Equation 5): 

 

( ) ( )+ +
= +

1 1kijk ij k ij
c c cα Bα Sη  (5) 

 

where  


=
1

0 1

t
B  is the dynamic matrix of conversion of the state vector from k to (k+1)-th frame; 

=  
T

2 2t tS  is the vector of linear transformation over samples of uncorrelated white Gaussian noise; 

( )+1k ij
cη  are the samples of uncorrelated white Gaussian noise with zero mathematical expectation and unit 

variance for the ( )i j -th pixel. 

Nevertheless, the issue of choosing an adequate mathematical model in the current conditions remains 
relevant. This is due to the fact that the Markov model (Equation 5) does not take into account possible jump-like 
changes in brightness, which may occur when observing highly maneuverable objects observed against a complex 
heterogeneous background. Thus, in order to select the most appropriate mathematical model for brightness 
description, studies of its statistical properties were conducted. The studies included estimation of the law of pixel 
brightness distribution, their numerical parameters, and autocorrelation properties. Also, in order to assess the 
influence of discontinuous changes in brightness and the possibility of taking them into account, the dynamic 
stability of the brightness of the image pixels was assessed (stationarity assessment). 
 

3. Results and Discussion 
 
 

The research was conducted in accordance with the developed methodology, which consists of the following 
steps: 

Step 1. A data bank containing the same type of video recordings for given surveillance conditions shall be 
formed. 

Step 2. The images belonging to the objects of interest are extracted from the data bank. Then the dependence 
of pixel brightness variation on the frame number is calculated. 

Step 3. The brightness distributions of images are analyzed using the histogram method. The brightness 
distributions of individual pixels are analyzed. Autocorrelation functions (ACF) are constructed and analyzed. 

Step 4. The dynamic stability of the process of pixel brightness change is estimated (stationarity estimation). 
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In order to carry out experimental studies following the described methodology, an experimental study 

program was developed, as depicted in Figure 2. The program complex consists of several components, including 
a data bank, an object image extraction device, a pixel brightness analysis device, and an assessment of dynamic 
stability. 
 

 
Figure 2. The structural scheme of the program complex of experimental research. 

 
The data bank of object images, consists of 18 records. The total size of the analyzed sample was more than 

100000 brightness samples. The sizes of object images are fixed and amounted to 32x32 pixels. It is considered 
that during the observation process the sizes of the object images remain unchanged. The objects are observed 
from different angles due to their own motion, UAV motion and rotation of the UAV. The background has a complex 
structure as it includes various elements such as a road with markings, vegetation patches, and other passing 
vehicles. It is considered that part of the background pixels belongs to the images of objects and makes up no more 
than 10% of the total number of pixels. Shooting was carried out during daylight hours in conditions of good 
visibility and absence of interfering factors (rain, snow, fog, etc.). Recording was carried out with a resolution 
of 1920×1080 pixels and 29 frames per second. To ensure the objectivity of the analysis, the recordings were made 
for the same type of observation conditions by one camera. 

Extraction of object images from video records is performed sequentially on each frame. An example of images 
extracted from the data bank is shown in Figure 3. The operator manually selects the area on the image belonging 
to the object by issuing a target designation on the image of the video recording frame. 

Object sizes throughout the whole recording should not change significantly, and are considered equal to the 
image sizes on the first frame. Selected images of the object are memorized in a time-ordered manner into a buffer 
for further processing. 

The results of the analysis of pixel brightness distribution and their correlation properties according 
to the brightness slices are shown in Figure 4. It was performed by the histogram method. The number of grouping 
intervals for histogram construction was 50. The obtained histograms show that the pixel and image brightness 
distributions have a multimode character, which means that the distribution parameters change in the process 
of observation. Basically, changes in the distribution parameters occur due to changes in the orientation 
of the observed object in space, which leads to distortion of its image. 

To evaluate correlations between brightness values at different moments of time, the ACF of image brightness 
was analyzed for all pixels over the entire observation interval. It follows from the analysis that the ACF can be 
approximated by an exponential function. Since the correlation time can be significantly different for each 
individual pixel, the correlation time should be chosen as the average of all pixels in the image. 

The dynamic stability was evaluated using the Kwiatkowski-Phillips-Schmidt-Shin test [20]. This test is widely 
used in economics for building regression models [20]. The choice of this test is due to its high accuracy 
and independence from the distribution law. Figure 5 shows the results of stationarity intervals for one pixel in 3 
RGB color channels. The graphs show that there are about 10 stationarity intervals of different lengths on the 
observation interval. It follows that the stationarity condition for this pixel is not fulfilled. 

Similarly, the results for all pixels in the image were obtained and the pixels that are non-stationary were 
counted. The results of this counting are shown in Figure 6. It can be seen that 74% of the image pixels that make 
up the data bank are non-stationary. The estimation of the duration of the stationarity intervals indicates 
similarities with the exponential law (Figure 6). The well-known statistical criterion of Pearson's chi-square test 
of agreement was used to evaluate the degree of correspondence. 
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a b 

 
c d 

Figure 3. Conditions of ground objects observation according to onboard optical location data: a, b - civilian vehicles 

on the highway; c, d - military vehicles on the march. 

 

 
Figure 4. Brightness histograms, autocorrelation function of ground object image brightness in three RGB 

color channels. 
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Figure 5. Example of selection of pixel brightness stationarity intervals. 

 
 

 
Figure 6. Results of estimation of dynamic stability and distribution of interval intervals  

of pixel brightness stationarity. 
 

As a result, it was found that the obtained distribution of stationarity intervals with confidence probability 
not less than 0.9 corresponds to the exponential law. The correspondence of the durations of time intervals 
to the exponential law indicates that the process of brightness variation in time can be obtained using a Markov 
sequence model with continuous time given by a Poisson flow of events. 

In [8], this approach is called semi-Markovian and is used to build models of maneuvering targets motion from 
radar data. The expression for the semi-Markovian model of the setting influence has the form (Equation 6): 
 

( ) ( ) ( )( )1 1 1k ijk ij k ij k ij+ + +
= + +c c c c

α Bα S η μ  (6) 

 

where 
( )1k ij+

c
μ  is the deterministic brightness value of the ( )ji -th pixel. 

The brightness values 
( )1k ij+

c
μ   for a color depth of 8 bits vary in a range 

( )1
0...255

k ij+
c

μ  at random moments 

of time determined by a Poisson flow of events. The time moments between the change of states 
( )1k ij+

c
μ  are called 
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stationarity intervals ( )1tr st + , the distribution of which is described by an exponential law. The expression 

for the generation of the stationarity interval ( )1tr st +  has the form (Equation 7): 

 

( )
( )

( )1
1

1
ln

λ
str s

tr s

t r+
+

 = −  (7) 

 

where ( )1λtr s+  is the intensity of the Poisson flow of events at the ( 1)s + -th time interval, where 

s1,2,..,s N= ; sN  is the total number of time intervals; sr  is the uniformly distributed random variable from 0 to 

1. 
Since the number of stationarity intervals depends only on the total observation time and does not depend on 

the time instant ( )1+kt , the Poisson flow is considered stationary and its intensity ( )1λtr s+  is constant and equal 

to ( ) ( ) ( )1 2λ λ ... λ λtrtr tr tr s= = .  

Taking into account expression (Equation 7), the moment of time of change of states 
( )1k ij+

c
μ   at the ( 1)s + -th 

time interval according to the Poisson flow has the form (Equation 8): 
 

( ) ( ) ( )1 1tr s tr s tr st t t+ += +   (8) 

 

where ( )tr st  - is the value corresponding to the s -th time interval. 

The results of checking the adequacy of the mathematical model (Equation 6) are presented in detail in [10], 
and some of them are shown in Figure 7a, from which it follows that the distribution of stationarity intervals 
obtained from the results of mathematical modeling corresponds to the experimental data contained in the data 
bank. The degree of correspondence is confirmed by Pearson's chi-square criterion of agreement with a confidence 
level not lower than 0.9. Figure 7b shows the estimates of ACF obtained from the results of modeling and from the 
contents of the data bank. It can be seen that the shape of the ACF and the correlation time have close values. 
 

 
Figure 7. Results of comparison of distributions of stationarity intervals and brightness ACF obtained 

from observations and mathematical modeling data. 
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checking whether the point estimates fall within the confidence interval 
0̂

I  and 
λ̂tr

I  with probability 0.9 and 

0.95. The results of the verification are summarized in Table 1. 
 

Table 1. Point and interval estimates of correlation times 0  and intensities λtr . 

Model  
parameters 

Point estimate 

0̂  and λ̂tr  
Interval estimation 

0̂
I  and 

λ̂tr
I  

Data Bank 
Mat. 

modeling 

Left boundary of the confidence 
interval 

Right boundary of 
the confidence interval 

0,9 0,95 0,9 0,95 

Correlation time  

0τ  
0,558 – 4,026 0,562 – 3,955 0,542 – 3,945 0,538 – 3,929 0,574 – 4,107 0,577 – 4,11 

Intensity of transitions 

λtr  
0,654 – 0,9 0,674 – 0,919 0,629 – 0,876 0,624 – 0,871 0,679 – 0,925 0,683 – 0,93 

 
As a result, with confidence probability not lower than 0.9 and error not more than 5 %, the estimates of 

correlation time and intensity of transitions obtained from the modeling results correspond to similar estimates 
obtained from the experimental data (Table 1). Thus, the obtained results of mathematical modeling confirm 
a high degree of adequacy of the semi-Markov model used to describe the brightness of images of ground objects. 
To assess the quality of the description of the observed process proposed by the semi-Markov model (Equation 6), 
a comparative analysis was carried out. The Markov model (Equation 5) is chosen as an alternative model used to 
describe images of moving objects. The main indicator of the model quality is the value of the total standard 
deviation of the brightness from the true value (non-convexity) of the setting and perturbing influences.  

The results of estimation of the quality of the observed process description on the example of one pixel 
for the Markov model, in which the regular component of the setting influence is represented by a polynomial 
model of the 0th order, are shown in Figure 8. 
 

 
Figure 8. Results of quality assessment of the description of the observed process using the Markov model with 

the setting influence in the form of a 0-th order polynomial. 
 

Figure 8a show the time dependence of the observed brightness. From these data, the brightness discrepancy 
is calculated, indicating the degree of fit of this model to the observed process. The ACF of the mismatch 
and the histogram of the distribution are shown in Figure 8b, 8c. It can be seen that the correlation time 
of the mismatch is of the order of 2.5 s, indicating a high correlation preserved after subtracting the regular 
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component of the model from the process. The obtained estimation of the distribution of the inconsistency with 
a confidence probability not lower than 0.9 showed non-compliance with the normal law of distribution. 
The dependence of the RMS of the observation on the 0-th order polynomial model in Figure 5d indicates a low 
quality of the brightness description, maintaining a large value of the mean RMS - 26.7. 

The results of evaluating the quality of the description of the observed process using the semi-Markov model 
are shown in Figure 9, where the process of describing the observed process within a limited time interval 
(stationarity interval) is depicted. Figures 9b, 9c show that the magnitude of the observations is practically 
not correlated, as evidenced by the close to zero value of the correlation time of the obtained ACF estimation. 
The histogram of the discrepancy distribution (Figure 9c) follows the normal law with a confidence level of 0.9. 
 

 
Figure 9. Results of quality assessment of the description of the observed process using a semi-Markov model. 

 
The given RMS dependence in Figure 9 shows that the mean value was 5.4, which is less by a factor of 1.5-1.9 

compared to the Markov model (Equation 5). 
 

 

4. Conclusion  
 

According to the proposed research methodology on the statistical properties of pixel brightness in images 
obtained from an airborne optical location system, the mathematical model for pixel brightness in ground object 
images should possess the following properties: 

 
1. The law of pixel brightness distribution is unknown and exhibits a multi-modal structure. 
2. The change in pixel brightness over time is primarily non-stationary (approximately 74%) and demonstrates 

properties of a dynamic system, with parameters varying over time. 
3. The durations of stationary intervals follow an exponential distribution, and state transitions occur randomly 

according to the Poisson distribution. 
4. The autocorrelation properties of pixel brightness over time can be described by an exponential ACF 

(Autocorrelation Function), where the correlation time corresponds to the average correlation time in each pixel 
of the object image. 

A semi-Markov model of pixel brightness was proposed [10], which differs from the Markov model by 
the possibility of adequate description of images of maneuvering objects. The application of the semi-Markov 
model allowed us to reduce the total RMS of the brightness discrepancy compared to the Markov model, in which 
the regular component is represented by a polynomial model of the 0th order by 1.5-1.9 times. 
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