The utilization of gimbal systems in unmanned aerial vehicles

Main Article Content

Özge Villi
Hakan Yavuz

Abstract

UAVs can be defined as a type of aircraft that carries payloads such as cameras, lasers, and radars, and is controlled by an onboard flight control system. UAVs are used in various application areas such as mapping, search and rescue, cargo transportation, reconnaissance, and surveillance. Considering the application areas of UAVs, it is seen that they perform many tasks involving functions such as live video recording, video transmission, object tracking, and surveillance. To fulfill the specified tasks, it requires the use of various image and video processing algorithms and video stabilization and noise reduction operations. Many control mechanisms are used in UAVs to meet these requirements. Thus, precise images can be taken and measurements can be made by minimizing distorting effects. In this article, information is first given about UAVs and their basic components. Subsequently, the importance of image stabilization techniques in camera systems is emphasized. In this context, technologies related to camera gimbal stabilization techniques used in UAVs are presented.

Downloads

Download data is not yet available.

Article Details

How to Cite
Villi, Özge, & Yavuz, H. (2024). The utilization of gimbal systems in unmanned aerial vehicles. Advanced UAV, 4(1), 19–30. Retrieved from https://publish.mersin.edu.tr/index.php/uav/article/view/1532
Section
Articles

References

Laghari, A. A., Jumani, A. K., Laghari, R. A., & Nawaz, H. (2023). Unmanned aerial vehicles: A review. Cognitive Robotics, 3, 8-22. https://doi.org/10.1016/j.cogr.2022.12.004

Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2010). An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica, 46(1), 29-39. https://doi.org/10.1016/j.automatica.2009.10.018

Altan, A., & Hacıoğlu, R. (2020). Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mechanical Systems and Signal Processing, 138, 106548. https://doi.org/10.1016/j.ymssp.2019.106548

Rajesh, R. J., & Ananda, C. M. (2015). PSO tuned PID controller for controlling camera position in UAV using 2-axis gimbal. In 2015 International Conference on Power and Advanced Control Engineering (ICPACE), 128-133, IEEE. https://doi.org/10.1109/ICPACE.2015.7274930

Hilkert, J. M. (2008). Inertially stabilized platform technology concepts and principles. IEEE Control Systems Magazine, 28(1), 26-46. https://doi.org/10.1109/MCS.2007.910256

Sharma, J., Hote, Y. V., & Prasad, R. (2020). Robust PID control of single-axis gimbal actuator via stability boundary locus. IFAC-PapersOnLine, 53(1), 27-32. https://doi.org/10.1016/j.ifacol.2020.06.005

DJI Developer. (2024). Gimbal.

https://developer.dji.com/mobile-sdk/documentation/ introduction/component-guide-gimbal.html

Globaldroneconference. (2024). UKRSPECSYSTEMS introduces new imaging and video system USG-400 Aerowatcher.

https://www.globaldroneconference.com/ukrspecsystems-introduces-new-imaging-and-video-system-usg-400-aerowatcher/

Made-in-China. 2kg payload camera drone waterproof delivery drone with thermal camera night vision camera splash 4 drone. (2024). https://shanghaiflyskygift.en.made-in-china.com/product/ rFMfUbtHhqYe/China-2kg-Payload-Camera-Drone-Waterproof-Delivery-Drone-with-Thermal-Camera-Night-Vision-Camera-Splash-4-Drone.html

Yakar, M., & Villi, O. (2023). İnsansız hava aracı uygulama alanları. Mersin Üniversitesi Harita Mühendisliği Kitapları.

Villi, O., & Yakar, M. (2022). İnsansız hava araçlarının kullanım alanları ve sensör tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100. https://doi.org/10.51534/tiha.1189263

Gašparović, M., & Jurjević, L. (2017). Gimbal influence on the stability of exterior orientation parameters of UAV acquired images. Sensors, 17(2), 401. https://doi.org/10.3390/s17020401

Ji, H., Li, B., & Yao, J. (2011) Electronic image stabilization algorithm based on TD filter. In: Proceedings of the 4th International Congress on Image and Signal Processing, 2, 682–686, IEEE.

https://doi.org/10.1109/CISP.2011.6100376

Yan, F., Iliyasu, A. M., Yang, H., & Hirota, K. (2016). Strategy for quantum image stabilization. Science China Information Sciences, 59, 1-10. https://doi.org/10.1007/s11432-016-5541-9

Hsu, S. C., Liang, S. F., & Lin, C. T. (2005). A robust digital image stabilization technique based on inverse triangle method and background detection. IEEE Transactions on Consumer Electronics, 51(2), 335-345. https://doi.org/10.1109/TCE.2005.1467968

Oshima, M., Hayashi, T., Fujioka, S., Inaji, T., Mitani, H., Kajino, J., Ikeda, K., & Komoda, K. (1989). VHS camcorder with electronic image stabilizer. IEEE Transactions on Consumer Electronics, 35(4), 749-758. https://doi.org/10.1109/30.106892

Sato, K., Ishizuka, S., Nikami, A., & Sato, M. (1993). Control techniques for optical image stabilizing system. IEEE transactions on Consumer Electronics, 39(3), 461-466. https://doi.org/10.1109/30.234621

Ko, S. J., Lee, S. H., & Lee, K. H. (1998). Digital image stabilizing algorithms based on bit-plane matching. IEEE Transactions on Consumer Electronics, 44(3), 617-622. https://doi.org/10.1109/30.713172

Dervişoğlu, S. (2023). İnterpolasyon tabanlı yeni bir video stabilizasyon yöntemi (Master's thesis, İskenderun Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı).

Miller, R., Mooty, G., & Hilkert, J. M. (2013). Gimbal system configurations and line-of-sight control techniques for small UAV applications. In Airborne intelligence, surveillance, reconnaissance (ISR) systems and applications X, 8713, 39-53, SPIE. https://doi.org/10.1117/12.2015777

Rao, M. S., Ananda, C. D., & Manohar, L. R. (2015). Design of single-axis rate table for calibration of gyro sensor used in micro aerial vehicles (MAV). International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), 14(2), 765-769.

Sangveraphunsiri, V., & Malithong, K. (2010). Control of inertial stabilization systems using robust inverse dynamics control and sliding mode control. In 6th International Conference on Automotive Engineering (ICAE-6) BITEC, Bangkok, Thailand.

Kamaruzzaman, M. A., Basri, H. H., & Ayob, M. N. (2023). Design and simulation of a customize three-axis gimbal structure using finite element analysis method. Journal of Advanced Research in Applied Sciences and Engineering Technology, 30(1), 158-167. https://doi.org/10.37934/araset.30.1.158167

Lin, C. E., & Yang, S. K. (2014). Camera gimbal tracking from UAV flight control. In 2014 CACS International Automatic Control Conference (CACS 2014), 319-322. IEEE.

https://doi.org/10.1109/CACS.2014.7097209

Ding, W., Yang, H., Yu, K., & Shu, J. (2023). Crack detection and quantification for concrete structures using UAV and transformer. Automation in Construction, 152, 104929. https://doi.org/10.1016/j.autcon.2023.104929

Tan, Y., Yi, W., Chen, P., & Zou, Y. (2024). An adaptive crack inspection method for building surface based on BIM, UAV and edge computing. Automation in Construction, 157, 105161.

https://doi.org/10.1016/j.autcon.2023.105161

Hansen, J. G., & de Figueiredo, R. P. (2024). Active object detection and tracking using gimbal mechanisms for autonomous drone applications. Drones, 8(2), 55. https://doi.org/10.3390/drones8020055

Shen, C., Fan, S., Jiang, X., Tan, R., & Fan, D. (2020). Dynamics modeling and theoretical study of the two-axis four-gimbal coarse–fine composite UAV electro-optical pod. Applied Sciences, 10(6), 1923.

https://doi.org/10.3390/app10061923

Quigley, M., Goodrich, M. A., Griffiths, S., Eldredge, A., & Beard, R. W. (2005). Target acquisition, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2600-2605. IEEE. https://doi.org/10.1109/ROBOT.2005.1570505

Rajesh, R. J., & Ananda, C. M. (2015). PSO tuned PID controller for controlling camera position in UAV using 2-axis gimbal. In 2015 International Conference on Power and Advanced Control Engineering (ICPACE), 128-133. IEEE. https://doi.org/10.1109/ICPACE.2015.7274930

Kurbanov, R., & Litvinov, M. (2020). Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro. In IOP Conference Series: Materials Science and Engineering 1001(1), 012062. IOP Publishing. https://doi.org/10.1088/1757-899X/1001/1/012062

Misopolinos, L., Zalidis, C. H., Liakopoulos, V., Stavridou, D., Katsigiannis, P., Alexandridis, T. K., & Zalidis, G. (2015). Development of a UAV system for VNIR-TIR acquisitions in precision agriculture. In Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), 9535, 478-487. SPIE. https://doi.org/10.1117/12.2192660